

Veterinary Medicine

23-9-2019

Molecular Genetic Techniques Explained

Bart Westendorp, PhD Alain de Bruin, DVM, PhD, DACVP

<u>b.westendorp@uu.nl</u> <u>a.debruin@uu.nl</u>

Veterinary Medicine

Research themes

Quantitative and qualitative analysis

Interpretation and recommendations

Single Cell Analysis Center Utrecht Sample preparation Tissue dissocation into single cells Cell capturing technology Isolate, image, and punch cells of interest 0.000000 **Barcoded NGS libraries** SMARTer, CEL-Seq2, WGA RNA of DNA sequencing **Bioinformatic analysis** Quality control Cell identification Images & NGS data Statistics had Fall charge **Research Facility Service** Optimizing study design

Sample preparation by experienced operators Comprehensive basic bioinformatic analysis Interpretation and recommendations

Veterinary Medicine

5

Content

- Introduction Molecular Pathology
- Data analysis on interactive scientific case studies
- Molecular genetic techniques
- Find mistakes in scientific abstract

Why gaining knowledge about Molecular Pathology?

- Identifying cause of disease
- Understanding the pathogenesis
- Prognosing survival duration of patients
- Building interactive bridge between pathologist & scientist
- Discovering new diseases and novel therapy strategies
- Identifying new functions of genes
- Passing successfully the ECVP exam

From DNA to protein

ECVP exam questions: molecular genetic techniques

- What do you measure by the technique X?
- Briefly explain the principle of technique X
- Explain the differences between two techniques
- Explain the Crispr/Cas9 approach to make a knockout mouse
- Name two special stains to support your diagnosis
- Name three molecular techniques to confirm your etiological diagnosis
- Briefly outline the steps in the workflow of a NGS experiment

Retinoblastoma

1986

Flexner Wintersteiner rosettes

Cell cycle control by Rb-E2F pathway

What do you measure by microarray analysis?

Box plots showing the expression levels of *E2F7* and *E2F8* from patients with normal or diseased livers derived from Affymterix Microarrays.

Explain the principle of microarray analysis

https://www.youtube.com/watch?v=yzBVOCwRanI

13

Name another technique to measure global RNA expression

Describe the data and provide an overall interpretation of the findings

Suggest a hypothesis about the role of E2F7 and E2F8 in liver cancer

Provide one experiment and techniques where you could test your hypothesis

Box plots showing the mRNA levels of *E2F7* and *E2F8* from patients with normal or diseased livers derived from Affymterix Microarrays.

Explain the principle of generating a transgenic mouse overexpressing a protein

Elias et al. J Clin Invest. 2003;<u>111(3)</u>:291-297

Explain the principle of IHC

Diagram 1: Illustration of Indirect Immunohistochemistry and Immunofluorescence methods.

Principles of ELISA

Principle of Western blotting

Southern, Northern and Western blotting

Utrecht University

9 19

What would you expect when you knockout E2F7/8 in the mice concerning liver cancer?

Which techniques can be used to generate knockout mice?

Explain the Crispr/Cas9 approach to make a knockout mouse

Principle of gene editing in mice

https://cmmt.ubc.ca/facilities-services/mouse-animal-production/maps-services/crispr-cas9/

EMBO Rep, Volume: 18, Issue: 2, Pages: 187-193,

23-9-2019 22

Veterinary Medicine

122222

Explain the principles of the siRNA technology for knocking down gene expression

What if the ko mice show embryonic lethality?

What could be the cause of death?

Dev Cell. 2012 ;22(4):849-62

How could you prove that the placenta is responsible for fetal death

Dev Cell. 2012 ;22(4):849-62

Explain the principle of generating conditional ko mice

GFP fluorescence confirms Cre activity in expected tissues

Liver specific deletion of E2F7/8

В

Cre

E2f7^{loxP/loxP}E2f8^{loxP/loxP}R26R^{loxP/loxP}

-

: Albumin-cre

Pandit et al. Nature Cell Biology 2012

E2F7/8 is essential liver cell binucleation

Pandit et al. Nature Cell Biology 2012

Inactivation of E2F7/8 results in liver tumors

E2F7/8 are transcriptional repressors of cell cycle genes

Targets to regulate E2F7/8

Boosting the immune system to fight cancer

- Tumor cells can express PD-L1 to inactivate attacking cytotoxic T-cells ٠
- Therapeutic antibody against PD-L1 blocks this defense to unleash T-cell ٠ response

Which patients benefit from PD-1 inhibition (nivolumab)?

No. at Risk Nivolumab

Ipilimumab

Molecular biology basics: quantifying DNA or mRNA

- Polymerase chain reaction (PCR) to amplify DNA.
- mRNA (unstable!) is first reverse-transcribed into cDNA.

Quantify biomarker mRNA; real-time PCR on cDNA

Questions:

- Which sample has the highest expression of biomarker X? Orange, blue or purple?

- If this is a qPCR on PD-L1 in 3 tumor samples: which tumor do you predict to respond best to immunotherapy?

23-9-2019 35

The real world is more complex: tumors are heterogeneous

Overall PD-L1 expression turned out to be a poor predictor of treatment success

Single cell analysis

23-9-2019 37

Utrecht University

Sorting single cells: flow cytometry

- Cell suspension passed through fluorescence detector
- Measure light scattering and intensity to identify cells
- Living/dead cells
- FACS Flow Assisted Cell Sorting: (single) live cells can be sorted into collection tubes/plates for molecular assays

Laser (light source)

https://www.creative-diagnostics.com/flow-cytometry-guide.htm

https://www.antibodies-online.com/resources/18/1540/cd-marker-panel/

Technique: Next generation sequencing

Step A: reverse transcription (RNA) and amplification. Primers contain barcodes (Indexes)

Technique: Next generation sequencing

mRNA counts per cell:

	Cell 1	Cell 2	Cell 3	Cell 4	Cell
Gene 1	0	87	12	3	
Gene 2	13	2	0	15	
Gene 3	321	250	130	40	
Gene 4	4	0	7	8	
Gene 5	0	0	0	14	
Gene					

Expression heatmaps; clusters

Data dimensionality reduction

- tSNE

- Diffusion maps

TOL AN AGE OF COMPANY AND A DAGE

Single cell RNA sequencing: analyzing T-cells

Utrecht University

Veterinary Medicine

Single cell RNA sequencing: analyzing cancer cell heterogeneity

Subclones of tumor cells express genes involved in immune-resistance

Question: what essential information for a pathologist is lacking here? Suggest a complementary technique

Spatial information - single cell in situ mRNA expression

Blue: DNA (DAPI) Green: Actin (phalloidin) Red: Pck1 mRNA molecules

fluorescence in-situ hybridization (FISH)

- Count RNA or DNA molecules on tissue section
- Fluorescent-labeled probe complementary to DNA/RNA of interest

mRNA can serve as biomarker, but proteins eventually do the work

Classic method: immunofluorescence staining or immunohistochemistry Fluorescence: only a handful of colors (i.e.) proteins can be measured

Question: how can the modern pathologist overcome this limitation?

mRNA can serve as biomarker, but proteins eventually do the work

Mass spectrometry to measure proteins directly, or indirectly

- Proteome: mass spec on tissue biopsy
- Spatially resolved: imaging mass cytometry
 - label antibodies with metals instead of fluorescent proteins.
 - Mass cytometry: ~40 proteins per cell

Leica Microsystems.com

Veterinary Medicine

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mass-cytometry

23-9-2019

Technique: Imaging mass cytometry

- Label (phospho-) proteins with metal istope-tagged antibodies
- Vaporize 1x1 um2 regions; measure amount of isotope per region with mass spec
- ~20-40 antibodies per experiment

signal extraction; image reconstruction. Up to ~40 proteins

Studying biomarkers and cell-cell interactions

- Studying a marker in a tissue homogenate often not enough.
- Single cell techniques
- Multiple proteins, mRNA markers at the same time.

Question: your starting material is often a frozen section or a formalin-fixed, paraffin-embedded section.

Can you study novel biomarker panel x in archived patient samples? If yes: how?

Laser microdissection

- Cut through histology section with laser
- Collect tissues of interest
- DNA / RNA / protein analysis
- High magnification: single cell
- Throughput: 96-well plates

Utrecht University

Laser microdissection

Veterinary Medicine

Laser microdissection

Question: Formulate a hypothesis how stroma versus tumor gene expression analysis could be used for biomarker discovery.

Summary: the molecular pathologist's toolbox

RNA expression

- qPCR (real-time PCR)
- RNA-sequencing (>1 cell; transcriptome)

Protein expression

- mass spec (1000s of cells; proteome)
- Western blot

RNA:

- 1. Deparaffinize
- 2. Digest protein (prot. K)
- 3. Isolate nucleic acids
- 4. Remove DNA (DNAse)
- 5. Wash and elute
- 6. RT and amplification

- FISH (in-situ hybridization)

- IF staining (1-5 proteins)

- Imaging Mass Cytometry (<40 proteins)

Protein expression

- IHC (1-2 proteins)

Scientific abstract

- Invitation to review a scientific manuscript
- Before you accept or decline the invitation you review the abstract
- Identify mistakes in the abstract and briefly explain why they are wrong
- Mock exam

