

Cochrane Review

A Cochrane Review is a scientific investigation in itself, with a pre-planned methods section and an assembly of original studies (predominantly randomised controlled trials and clinical controlled trials, but also sometimes, non-randomised observational studies) as their 'subjects'. The results of these multiple primary investigations are synthesized by using strategies that limit bias and random error. These strategies include a comprehensive search of all potentially relevant studies and the use of explicit, reproducible criteria in the selection of studies for review. Primary research designs and study characteristics are appraised, data synthesized, and results interpreted.

Abstract	Jump to
Background	
High-dose chemotherapy with autologous stem cell support (HDT) has been proven effective in I lymphoma (NHL). However, conflicting results of HDT as part of first-line treatment have been rep (RCTs). We undertook a systematic review and meta-analysis to assess the effects of such treat	ported in randomised controlled trials
Objectives	
To determine whether high-dose chemotherapy with autologous stem cell transplantation as par in patients with aggressive non-Hodgkin lymphoma.	rt of first-line treatment improves survival
Search methods	
MEDLINE, EMBASE, Cancer Lit, the Cochrane Library and smaller databases, Internet-database proceedings of the American Society of Clinical Oncology and the American Society of Hematolog An update search in MEDLINE and CENTRAL was done in June 2010, no more trials fulfilling the included full-text, abstract publications and unpublished data.	gy were searched until September 2006.
Selection criteria	
Randomised controlled trials comparing conventional chemotherapy versus high-dose chemoth with aggressive non-Hodgkin lymphoma were included in this review.	nerapy in the first-line treatment of adults
Data collection and analysis	
Eligibility and quality assessment, data extraction and analysis were done in duplicate. All author and asked to provide individual patient data.	rs were contacted to obtain missing data

Main results

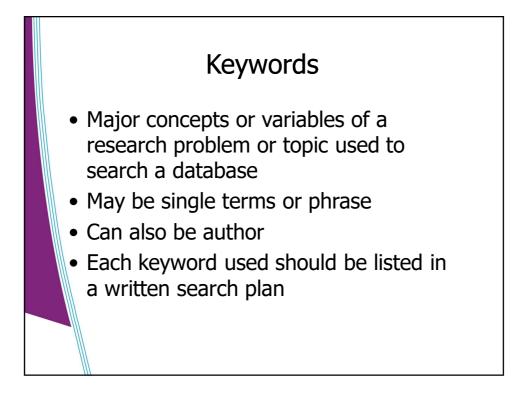
Eifteen RCTs including 3079 patients were eligible for this meta-analysis. Overall treatment-related mortality was 6.0% in the HDT group and not significantly different compared to conventional chemotherapy (OR 1.33 [95% CI 0.91 to 1.93], P = 0.14). 13 studies including 2018 patients showed significantly higher CR rates in the group receiving HDT (OR 1.32, [95% CI 1.09 to 1.59], P = 0.14). 13 studies including 2018 patients showed significantly higher CR rates in the group receiving HDT (OR 1.32, [95% CI 1.09 to 1.59], P = 0.14). 13 studies including 2018 not have an effect on OS, when compared to conventional chemotherapy. The pooled HR was 1.04 ([95% CI 0.91 to 1.18], P = 0.58). There was no statistical heterogeneity among the trials. Sensitivity analyses underlined the robustness of these results. Subgroup analysis of prognostic groups according to IPI did not show any survival difference between HDT and controls in 12 trials (low and low-intermediate risk IPI: HR 1.41[95% CI 0.91 to 2.10], P = 0.09; high-intermediate and high risk IPI: HR 0.97 [95% CI 0.81 to 1.07], P = 0.31. Other possible risk factors such as the proportion of patient with diffuse large cell lymphoma, protocol adherence, HDT strategy, response status before HDT, conditioning regimens and methodological issues were analysed in sensitivity analyses. However, there was no evidence for an association between these factors and the results of our analyses.

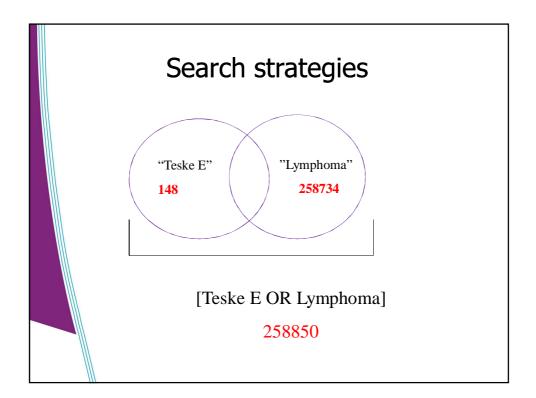
Authors' conclusions

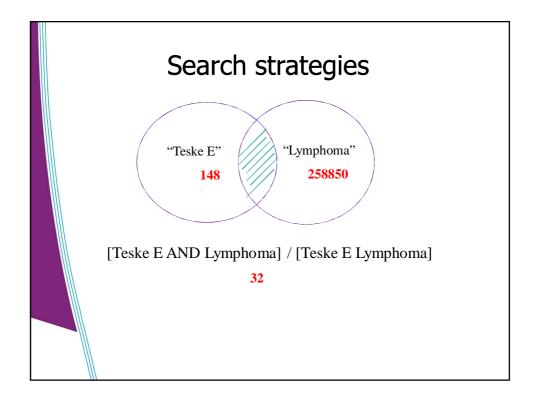
Despite higher CR rates, there is no benefit for high-dose chemotherapy with stem cell transplantation as a first line treatment in patients with aggressive NHL.

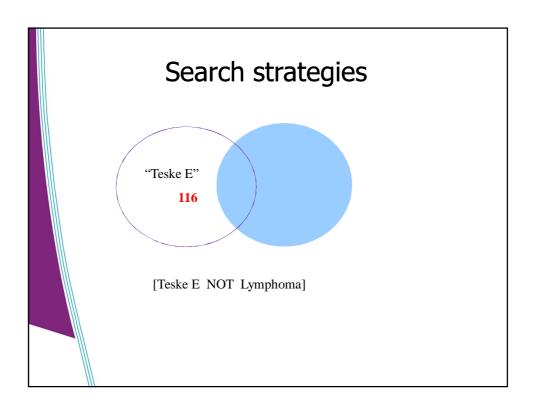
However, in veterinary medicine no Cochrane Review available

Databases and basics of literature search

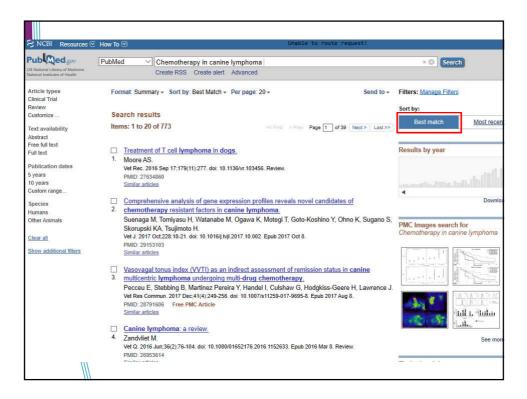

- Medical library resources
- Review articles
- Databases of medical literature
 - Medline/PubMed, Scopus
 - Full-text databases
 - Electronic journals

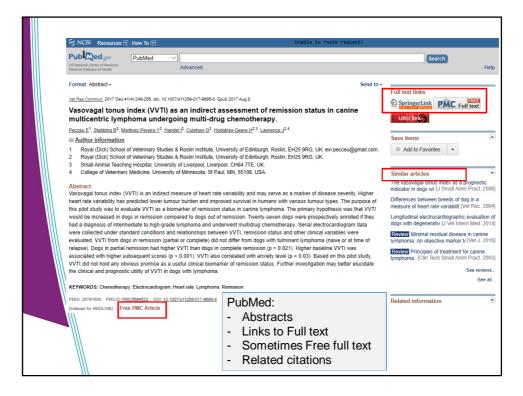

MEDLINE:

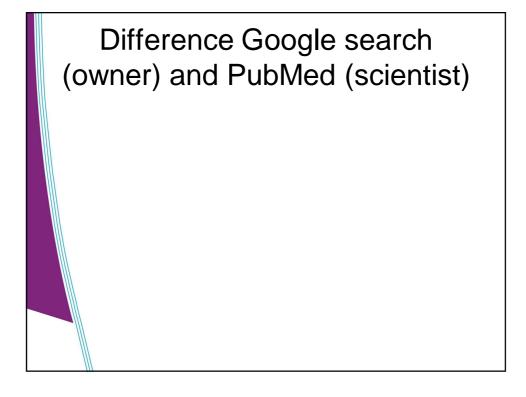

- Bibliographic database covering the fields of medicine, nursing, dentistry, veterinary medicine, the health care system, and the preclinical sciences.
- Contains bibliographic citations and author abstracts from more than 5,200 biomedical journals published in the United States and 70 other countries.
- The database contains over 25 million citations dating back to the mid-1960s

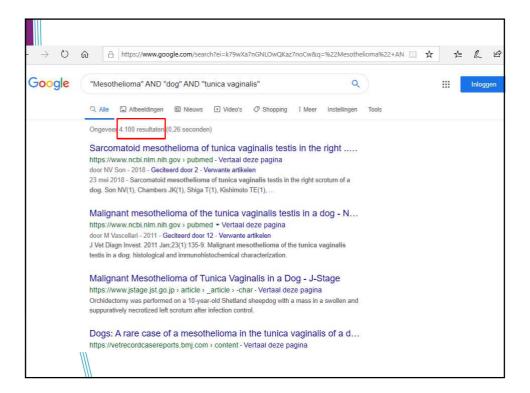

Coverage is worldwide, but most records are from English-language sources or have English abstracts

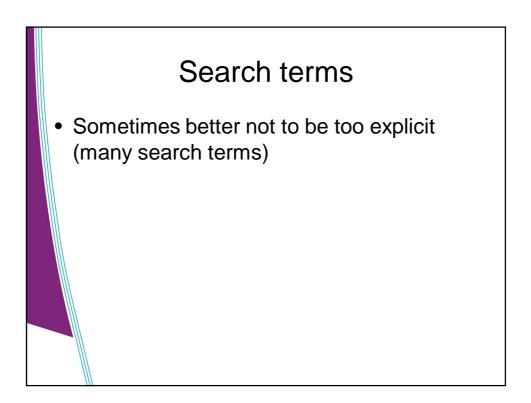
$\leftarrow \rightarrow \circ \circ$	A https://www.ncbi.nlm.nih.go	v/pubmed?otool=inluulib	
US National Library of Medicine National Institutes of Health	Gene Genome GEO DataSets GEO Profiles	Teske E lymphoma d	
	GTR HomoloGene Identical Protein Groups MedGen	ubMed	Wine stations for binned in a literature (
	MeSH NCBI Web Site NLM Catalog Nucleotide OMIM	an ne ferrar an iteration we have a second to second second	illion citations for biomedical literature (Citations may include links to full-text o sites.
Using PubMed	PMC PopSet	Med Tools	More Resources
PubMed Quick Start Guid	Probe Protein	led Mobile	MeSH Database
Full Text Articles	Protein Clusters	e Citation Matcher	Journals in NCBI Database
PubMed FAQs	PubChem BioAssay PubChem Compound	Citation Matcher	Clinical Trials
PubMed Tutorials	PubChem Substance PubMed	al Queries	E-Utilities (API)
New and Noteworthy	SNP Sparcle	-Specific Queries	LinkOut

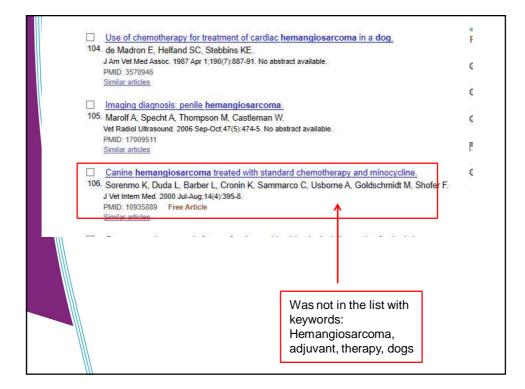


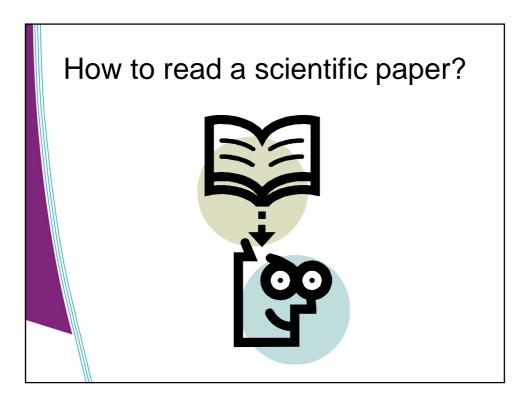


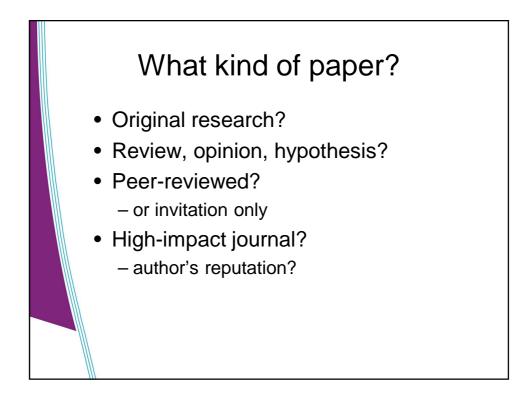


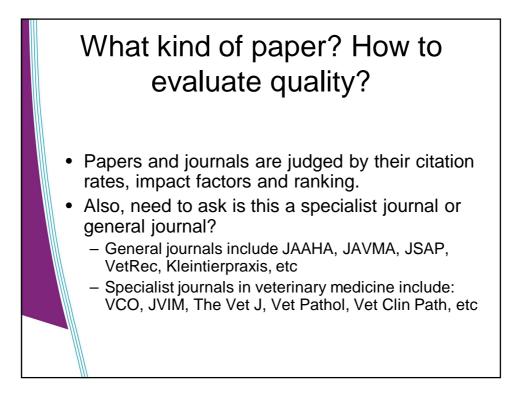




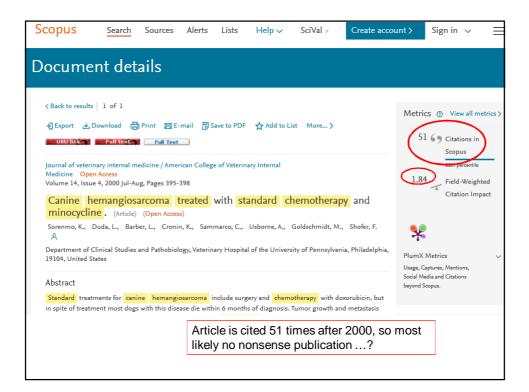


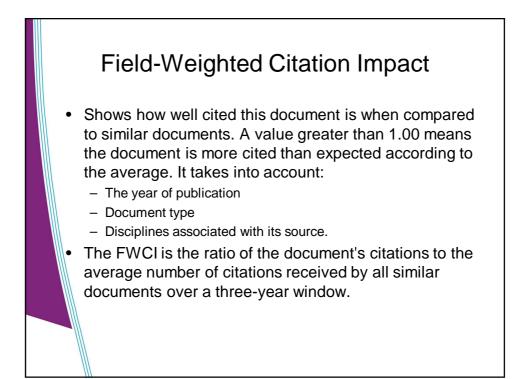

Public gov US National Library of Medicine National Institutes of Health	PubMed / mesothelioma and dog and tunica vaginalis Create RSS Create alert Advanced
Article types Clinical Trial Review Customize	Format: Summary - Sort by: Best Match - Send to Search results
Text availability Abstract Free full text Full text Publication dates 5 years 10 years Custom range	 Items: 3 Sarcomatoid mesothelioma of tunica vaginalis testis in the right scrotum of a dog. Son NV, Chambers JK, Shiga T, Kishimoto TE, Kikuhara S, Saeki K, Fujiwara R, Tsuboi M, Nishimura R, Uchida K, Nakayama H. J Vet Med Sci. 2018 Jul 12;80(7):1125-1128. doi: 10.1292/jvms.18-0186. Epub 2018 May 23. PMID: 29794371 Free PMC Article Similar articles
Species Humans Other Animals <u>Clear all</u> <u>Show additional filters</u>	 Malignant mesothelioma of the tunica vaginalis testis in a dog: histological and immunohistochemical characterization. Vascellari M, Carminato A, Camali G, Melchiotti E, Mutinelli F. J Vet Diagn Invest. 2011 Jan;23(1):135-9. PMID: 21217045 Similar articles
	 Malignant mesothelioma of the tunica vaginalis in a dog. Cihak RW, Roen DR, Klaassen J. J Comp Pathol. 1986 Jul;96(4):459-62. PMID: 3734174 Similar articles




S NCBI Resources 🖸	How To ⊙ Unable to route request!	
Publiced.gov US National Library of Medicine National Institutes of Health	PubMed PubMed Create RSS Create alert Advanced	× 😒 Search
Article types Clinical Trial	Format: Summary + Sort by: Best Match + Per page: 20 + Send to +	Filters: Manage Filters
Review Customize	Search results	Sort by:
Text availability Abstract	Items: 1 to 20 of 45 Only 45 << Pirst	Best match Most recen
Free full text Full text Publication dates	Adjuvant Doxorubicin with or without Metronomic Cyclophosphamide for Canine Splenic <u>Hemangiosarcoma</u> , Matsuvama A, Poirier VJ, Mantovani F, Foster RA, Mutsaers AJ,	Find related data Database: Select V
5 years 10 years Custom range	watsuyamia A, Poiner VJ, wamovami F, Poster IVA, Wutsaers AJ. J Am Anim Hosp Assoc. 2017 Nov/Dec;53(6):304-312. doi: 10.5326/JAAHA-MS-6540. Epub 2017 Sep 11. PMID: 2682429 Similar articles	Find items
Species Humans Other Animals	Comparison of doxorubicin-cyclophosphamide with doxorubicin-dacarbazine for the adjuvant treatment of canine hemangiosarcoma.	Best match search information
Clear all	Finotello R, Stefanello D, Zini E, Marconato L. Vet Comp Oncol. 2017 Mar; 15(1):25-35. doi: 10.1111/vco.12139. Epub 2015 Jan 26. PMID: 25623994 Free Article	Recent Activity
Show additional filters	Similar articles	A hemangiosarcoma adjuvant therapy (45)
	Survival time of dogs with splenic hemangiosarcoma treated by splenectomy with or without adjuvant chemotherapy: 208 cases (2001-2012).	Q mesothelioma and dog and tunica vaginalis (3)
	Wendelburg KM, Price LL, Burgess KE, Lyons JA, Lew FH, Berg J, J Am Vet Med Assoc. 2015 Aug 15/247(4):393-403. doi: 10.2460/javma.247.4.393. PMID: 26225611	Vasovagal tonus index (VVTI) as an indirect assessment of remission st
	PMID: 2023011 Similar articles	Q Chemotherapy in canine lymphoma
	Evaluation of clinical and histologic factors associated with survival time in dogs with stage II splenic hemangiosarcoma treated by splenectomy and adjuvant chemotherapy: 30 cases	Q Teske E NOT lymphoma (116)
	(2011-2014). Moore AS, Rassnick KM, Frimberger AE.	See

Pub Med.gov	PubMed hemangiosarcoma therapy dog	
US National Library of Medicine National Institutes of Health	S RSS Save search Advanced	
Article types Clinical Trial	Summary + 20 per page + Sort by Most Recent + Send to: +	Filters: M
Review Customize	Results: 1 to 20 of 140 <	New feat
		Try the ne
Text availability	Clinical outcome of 42 dogs with scapular tumors treated by scapulectomy: a Veterinary Society of	Sort by R
Abstract	 Surgical Oncology (VSSO) retrospective study (1995-2010). 	
Free full text Full text	Montinaro V, Boston SE, Buracco P, Culp WT, Romanelli G, Straw R, Ryan S.	-
Full text	Vet Surg. 2013 Nov;42(8):943-50. doi: 10.1111/j.1532-950X.2013.12066.x.	7 free ful
Publication dates	PMID: 24433298 Related citations	Central
5 years	Related citations	Doxorubic
10 years	Hemipelvectomy: outcome in 84 dogs and 16 cats. A veterinary society of surgical oncology	canine spl
Custom range	 retrospective study. 	Epidemiol
Species	Bray JP, Worley DR, Henderson RA, Boston SE, Mathews KG, Romanelli G, Bacon NJ, Liptak JM,	features of
Humans	Scase TJ	Pharmaco
Other Animals	Vet Surg. 2014 Jan;43(1):27-37. doi: 10.1111/j.1532-950X.2013.12080.x. Epub 2013 Nov 20.	prevents g
	PMID: 24256297	
Clear all	Related citations	
Show additional filters		-
	VAC protocol for treatment of dogs with stage III hemangiosarcoma.	Find rela
	 Alvarez FJ, Hosoya K, Lara-Garcia A, Kisseberth W, Couto G. 	Database:
	J Am Anim Hosp Assoc, 2013 Nov-Dec;49(6):370-7. doi: 10.5326/JAAHA-MS-5954. Epub 2013 Sep 19.	Database.
	PMID: 24051260	
	Related citations	
	Doxorubicin and deracoxib adjuvant therapy for canine splenic hemangiosarcoma: a pilot study.	-
	4. Kahn SA. Mullin CM. de Lorimier LP. Burgess KE. Risbon RE. Fred RM 3rd. Drobatz K. Clifford CA.	Search d

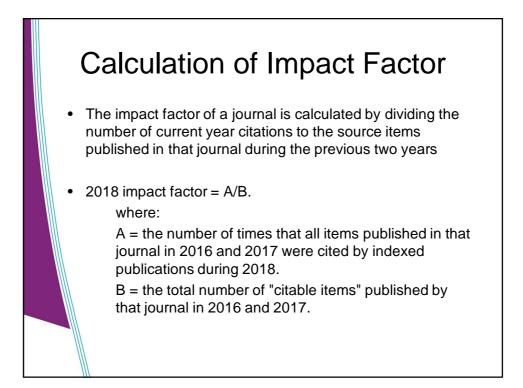


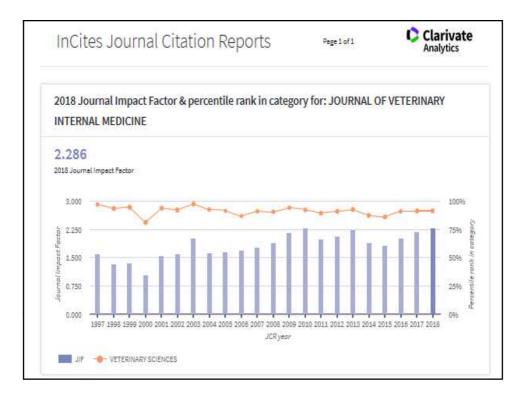


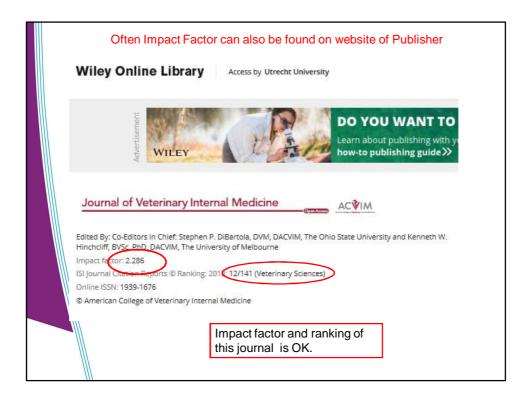
How to find out citation rate and impact factor?

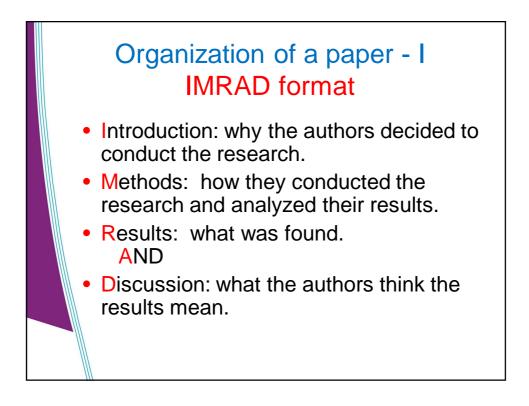

 Scopus: => citation rate of individual article

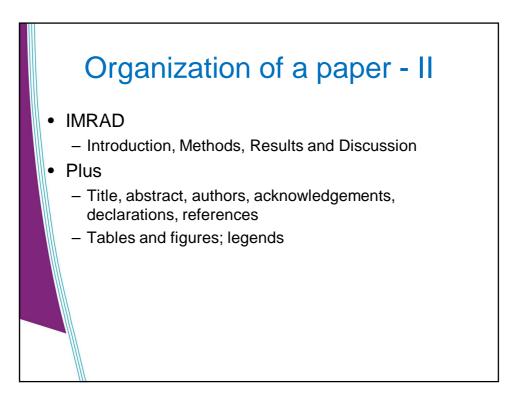
 ISI Web of Knowledge: Journal Citation Reports => Impact Factor and Ranking of journal

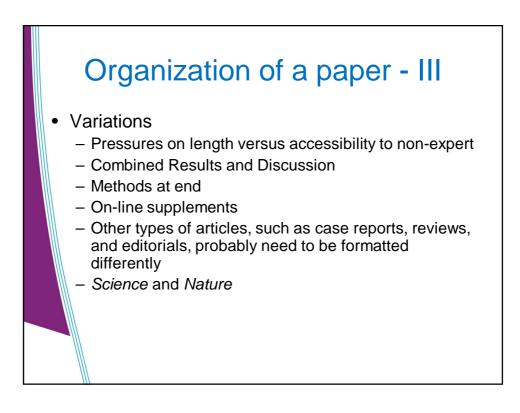


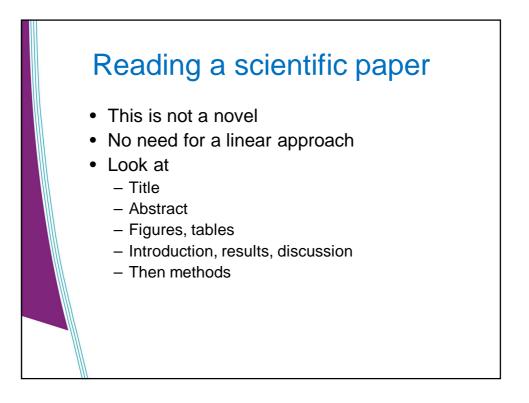

$\leftrightarrow \rightarrow \circlearrowright$ \textcircled{O} \textcircled{O} appswebofknowledge.com/WOS_	GeneralSearch_input.do?p	oroduct=WOS	8:search_mode=GeneralS	
Web of Science InCites Journal Citation Reports Essential Science Ind	icators EndNote Publon	s Kopernio		Sign In 👻 Help 👻 English 👻
Web of Science 🥄				Clarivate Analytics
		Tools 👻	Searches and alerts 👻	Search History Marked List
Select a database Web of Science Core Collection	•			P Claim your publications Track your citations
Basic Search Cited Reference Search Advanced Search	Author Search			
Example: oil spill* mediterranean	Торіс		▼ Search	Search tips
		+ Add row	/ Reset	
Timespan All years (1900 - 2019) 👻				
More settings 🔻				

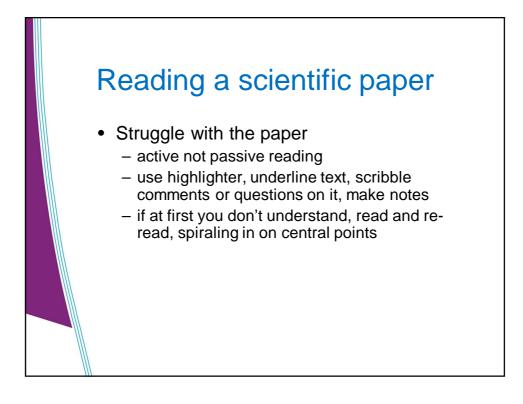


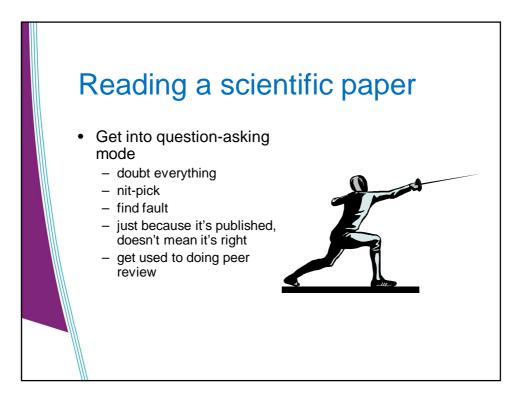


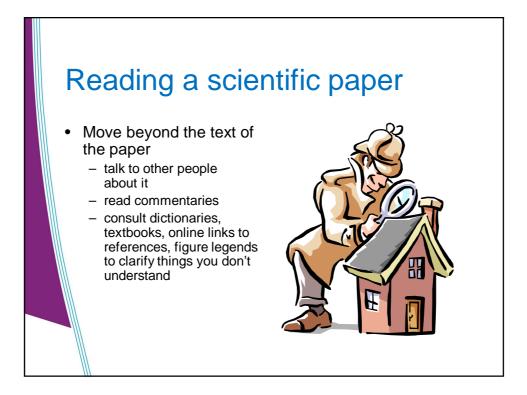


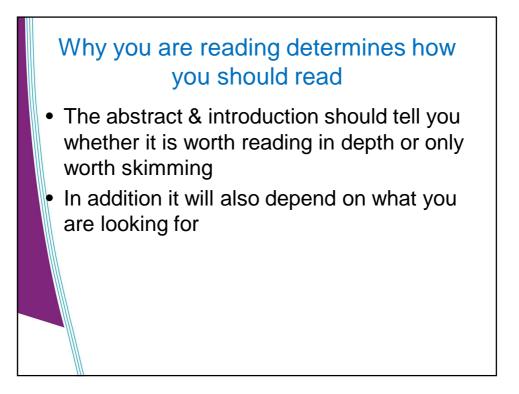

Go to Journal Profile		Journal	s By Ranl	Categories By Ran	k			
Master Search	Q.	Journal Titles Ranked by Impact Factor			141 Vet Sciences Journals			
Compare Journals		Compare Selected Journals Add Journals			s to New or Ex	isting List	Customize Indicat	
	-	Select All		Full Journal Title	Total Cites	Journal Impact Factor *	Eigenfactor Score	
View Title Changes	0		3	FISH & SHELLFISH IMMUNOLOGY	16,578	3.298	0.01663	
Select Journals			4	VETERINARY RESEARCH	5,050	3.117	0.00709	
Select Categories			5	MEDICAL MYCOLOGY	4,706	2.851	0.00546	
Select Categories		E	6	LAB ANIMAL	523	2.794	0.00077	
Select JCR Year			7	VETERINARY MICROBIOLOGY	15,799	2.791	0.01789	
2018			8	Veterinary and Comparative Oncology	1,399	2.379	0.00254	
Select Edition			9	VETERINARY QUARTERLY	1,112	2.340	0.00106	
Open Access		E	10	PREVENTIVE VETERINARY MEDICINE	7,423	2.302	0.01000	
Open Access			11	THERIOGENOLOGY	16,695	2.299	0.01282	
Category Schema Web of Science			12	JOURNAL OF VETERINARY	8,142	2.286	0.00928	

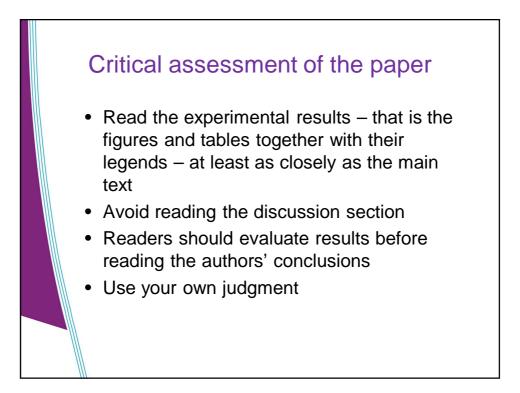

	Impact metrics			Source me	etrics	
Total Cites		8,142	Graph	Citable Items	239	Gra
Journal mpact Factor		2.286	<u>Graph</u>	% Articles in	97.07	Gra
5 Year mpact Factor		2.491	Graph	Citable Items Average JIF Percentile	91.844	
mmediacy ndex		0.410	Graph	Cited Half-Life	9.0	<u>Gra</u> <u>Gra</u>
mpact Factor Without Journal Self Cites		1.860	Graph	Citing Half-Life	9.4	<u>Gra</u>

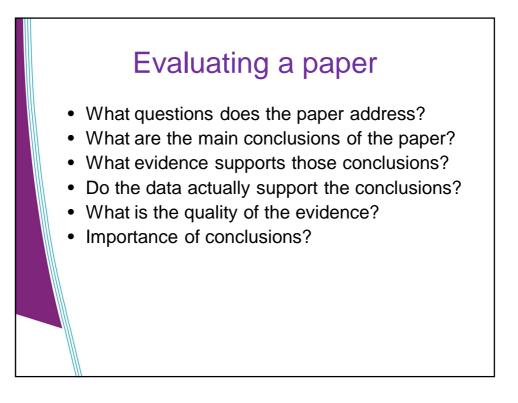


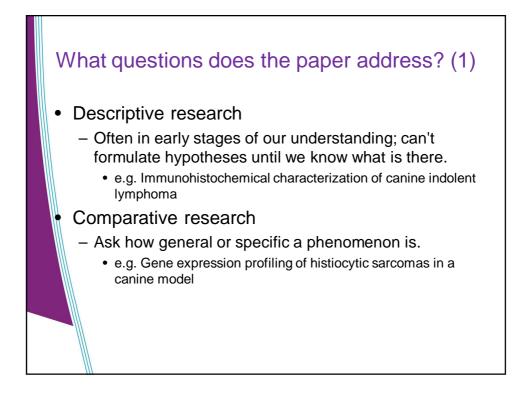


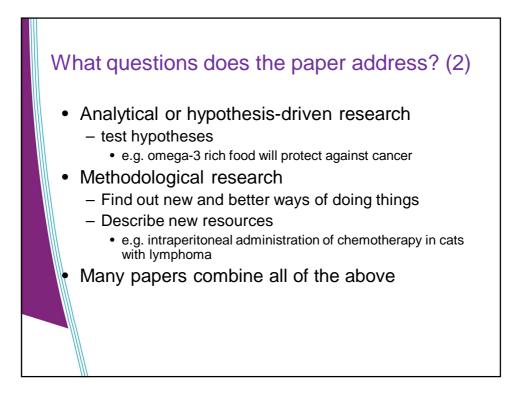


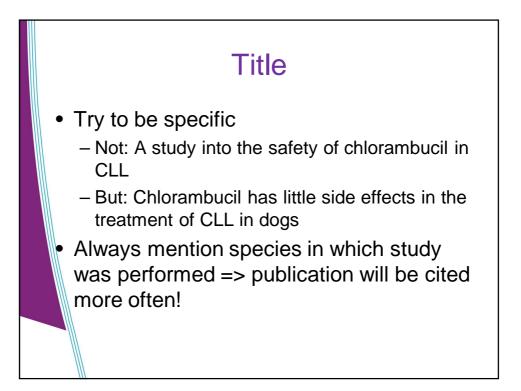


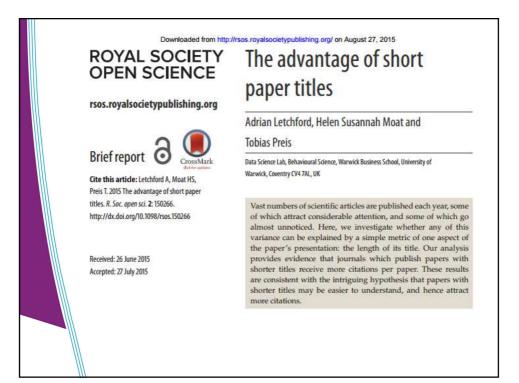


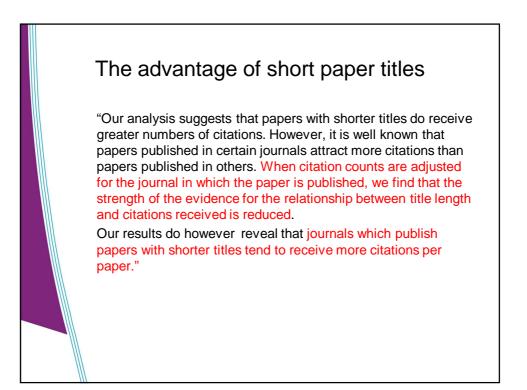


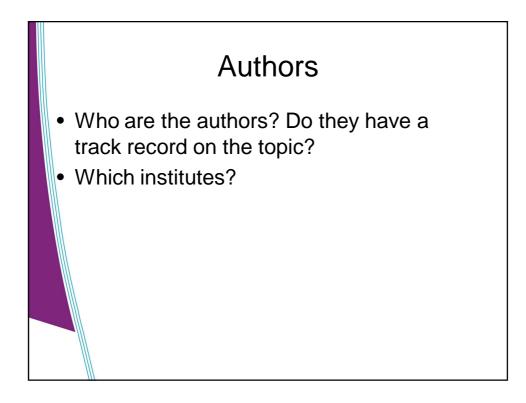


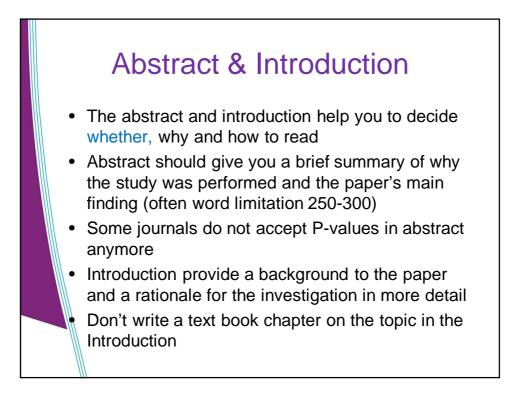


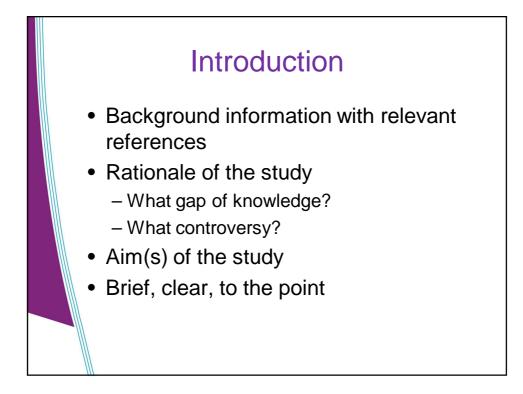


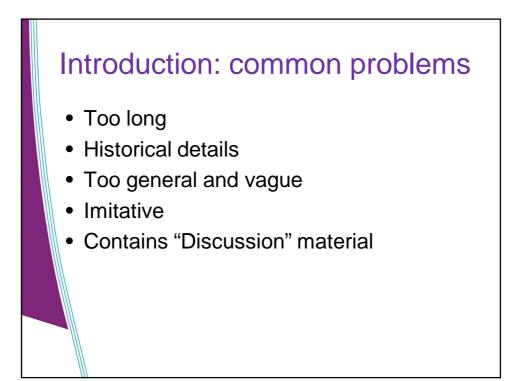

The places to find information about a paper's subject matter

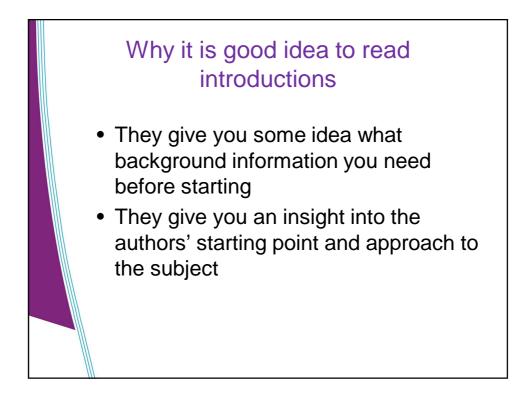

- The title
- The abstract
- The introduction

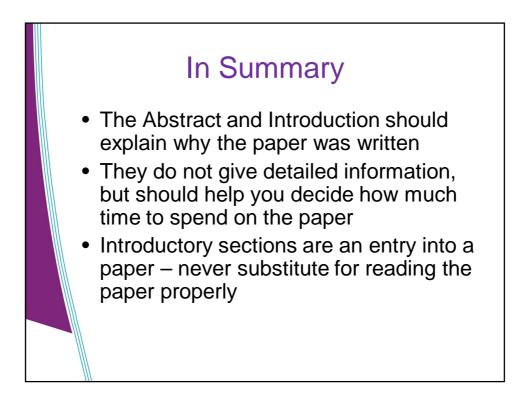

Note

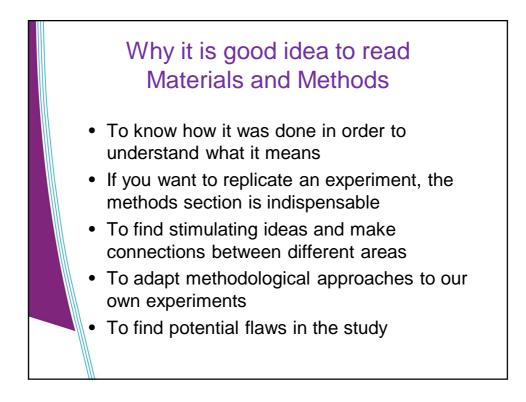

The discussion contains further ideas, but it is not worth reading the discussion in any detail until we have a good idea what is being discussed.

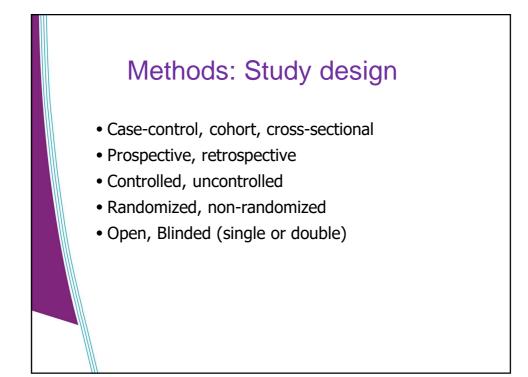


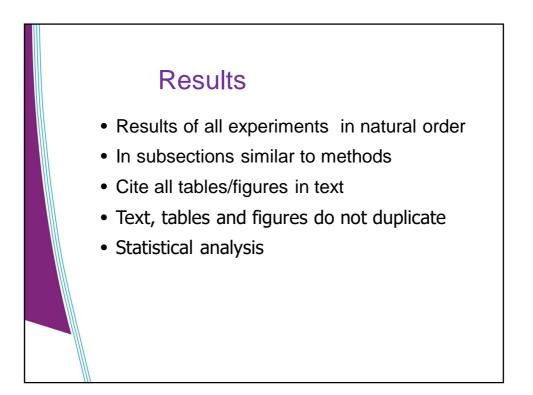


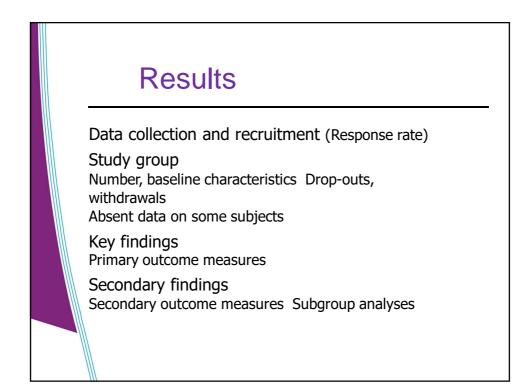


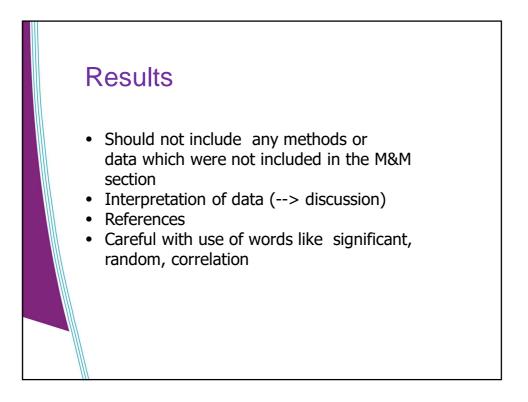


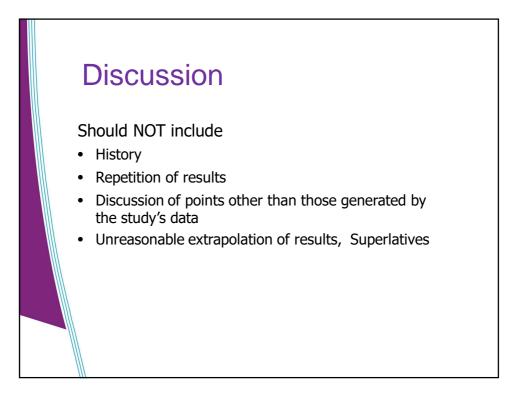


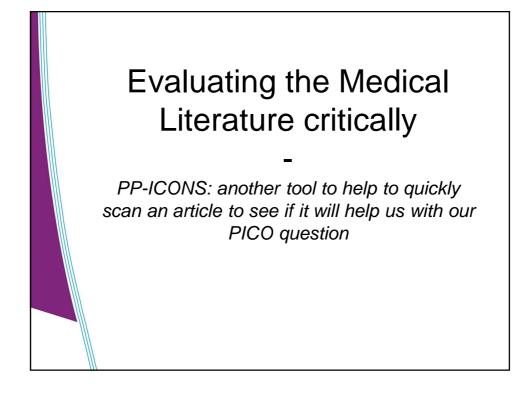


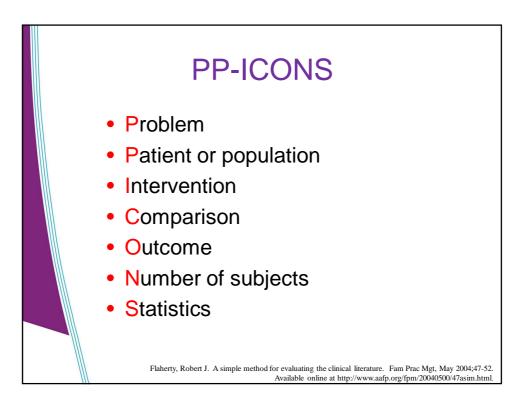


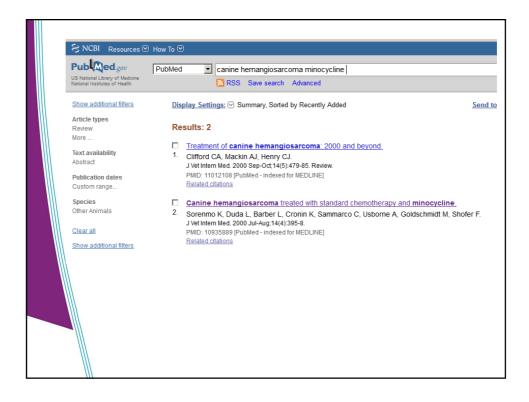


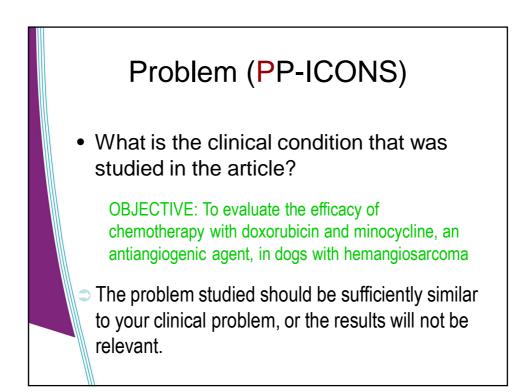


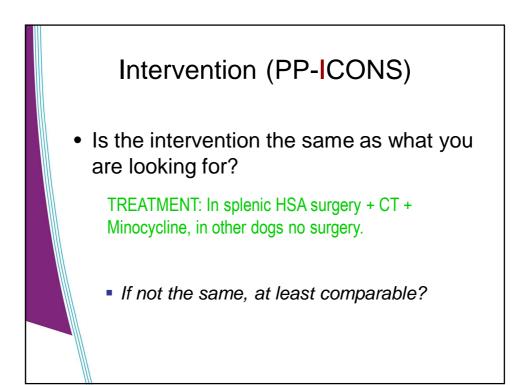


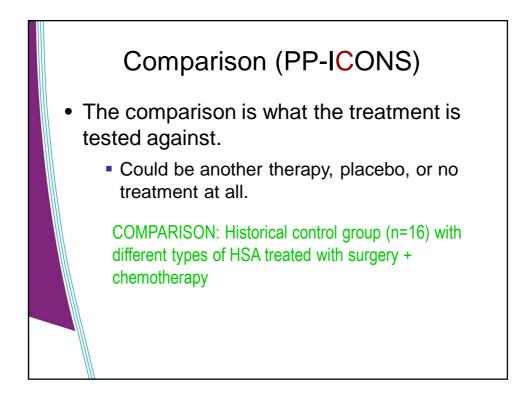


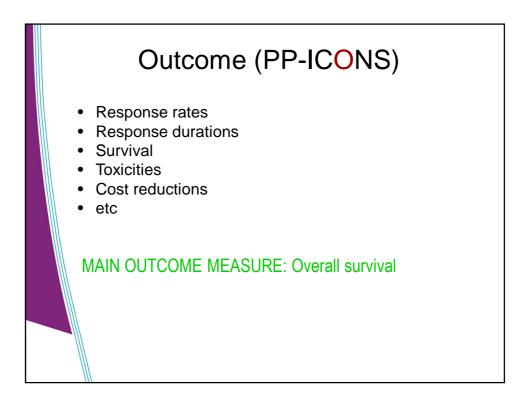


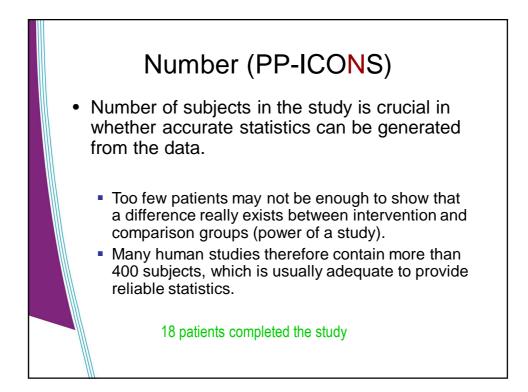

Discussion

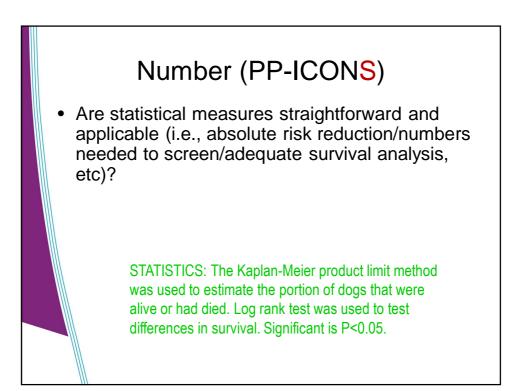

- Recapitulation of major findings
- Discussion of findings cf. available data
- Why the difference, why more reliable, etc
- Discussion of important minor findings
- Alternative explanations
- Strength and pitfalls
- Implications of the findings
- Unanswered questions and future research
- Final summary / conclusion

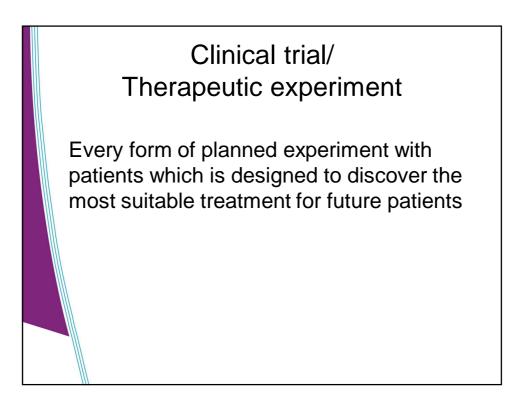


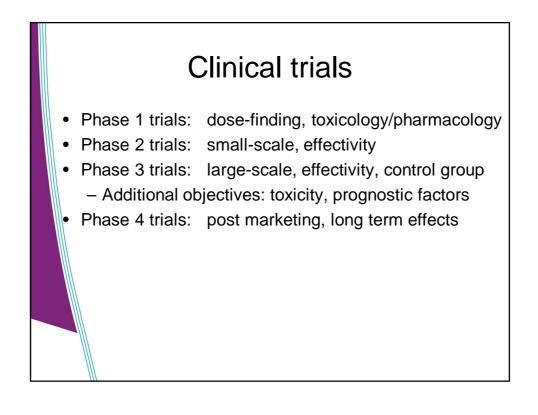


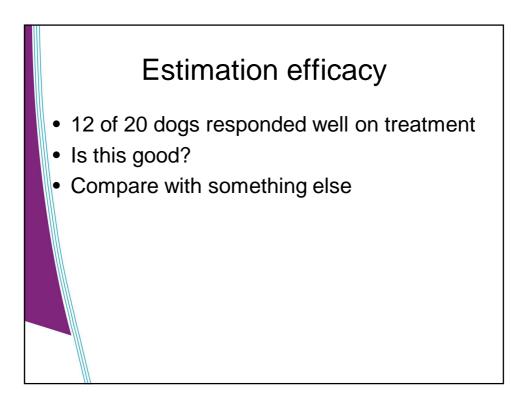


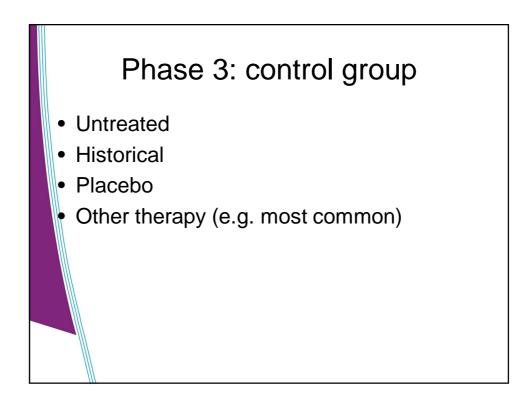


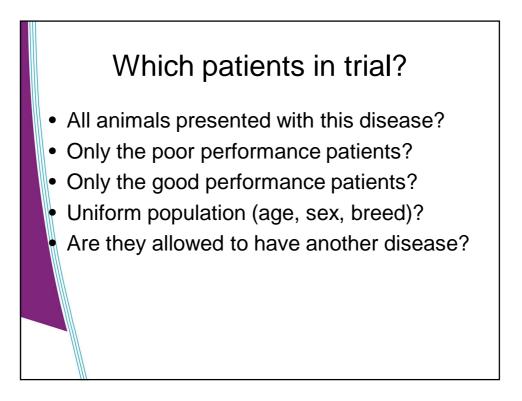


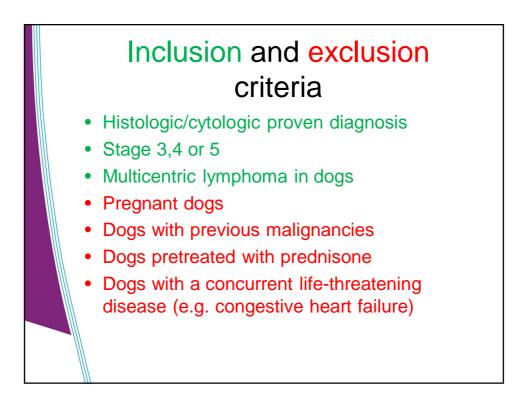


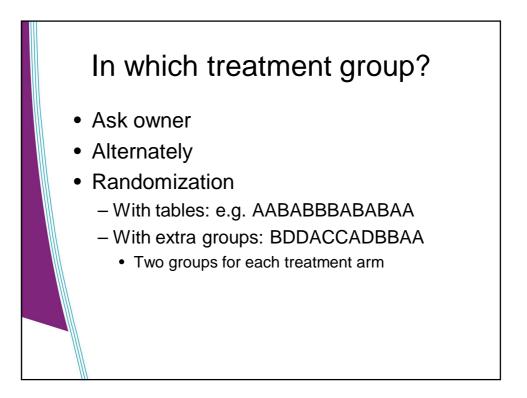


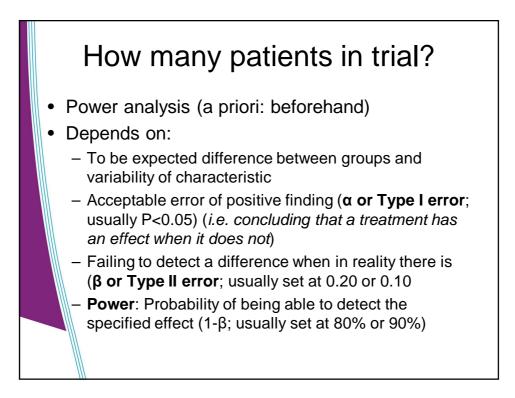


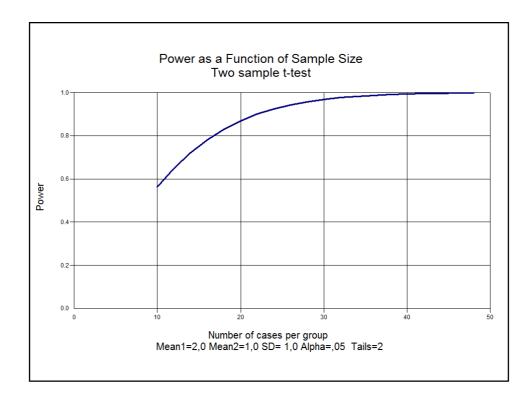


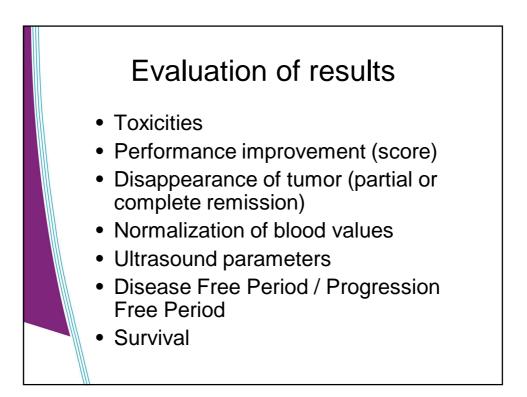


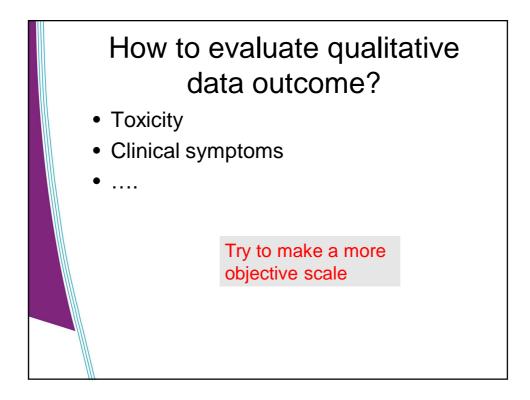


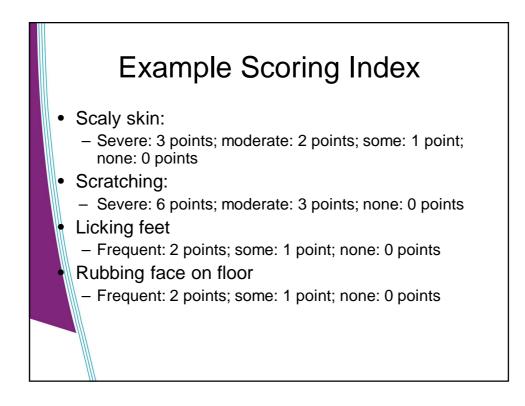


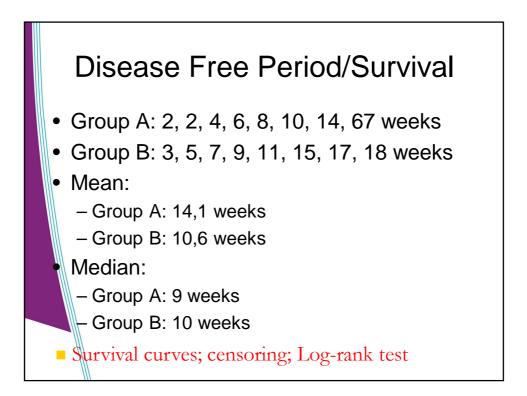


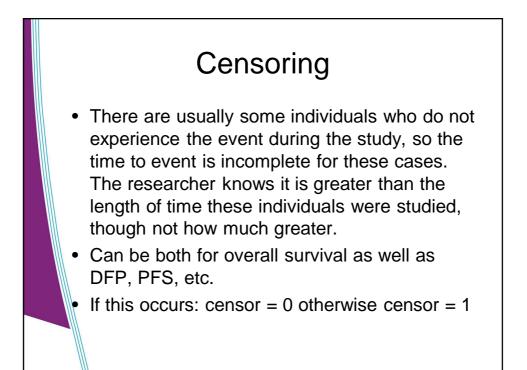




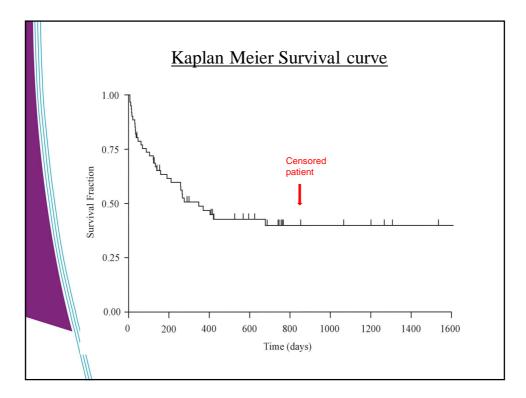


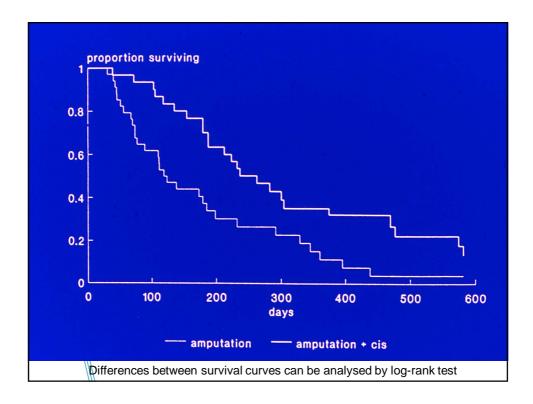

F	Poweranalysis with	statistical so	oftware					
	Power and Precision - [t-tes ; File Options Tools View F]]]]]] []] []] []]]]]]]]	Help						
		Population Mean	Standard Deviation	N Per Group	Standard Error	95% Lo w er	95% Upper	
	Population 1 Population 2	2,0 -	1,0	17				
	Mean Difference	1,0	1,0	34	0,34	0,31	1,69	
	Alpha= 0,05, Tails= 2			Power		81%		

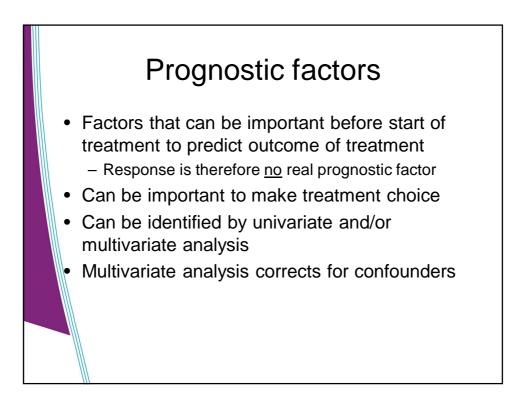


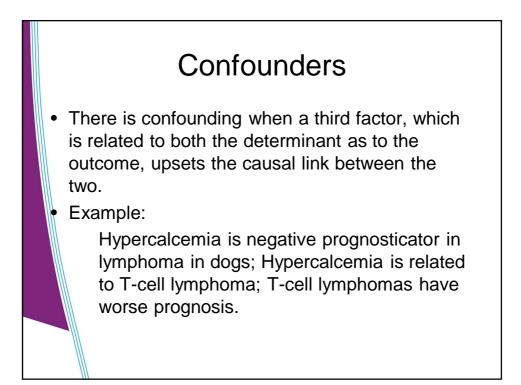


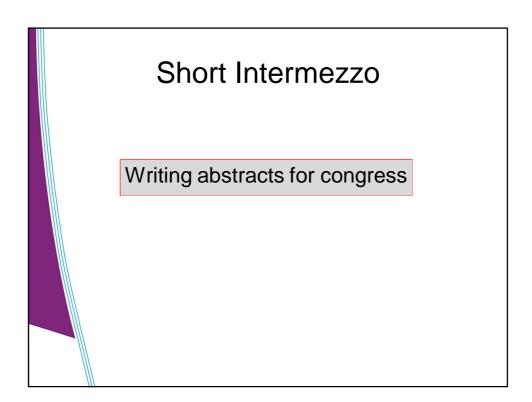
Examples toxicity grading										
Toxicity	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4					
Anorexia/ vomiting	None	Anorexia	Transient vomiting	Therapy needed	Constant vomiting					
Diarrhea	None	< 2 days	> 2 days	Therapy needed	Hemaorrhagic Dehydration					
Alopecia	None	Minimal	Focal	Complete Reversible	Complete Irreversible					
Hematocrit	>0.36	0.29-0.36	0.24-0.28	0.19-0.23	<0.19					
Leukocyes	>4.0	3.0-3.9	2.0-2.9	1.0-1.9	<1.0					
Thrombocytes	>100	75-99	50-74	25-49	<25					

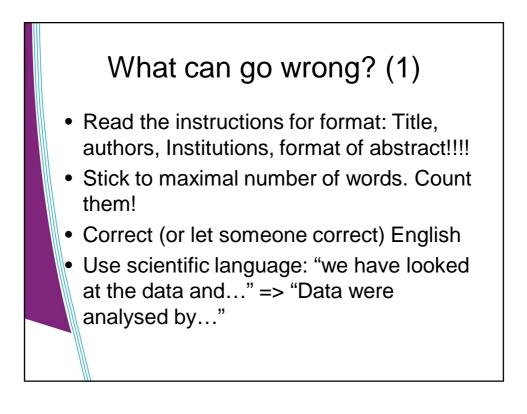


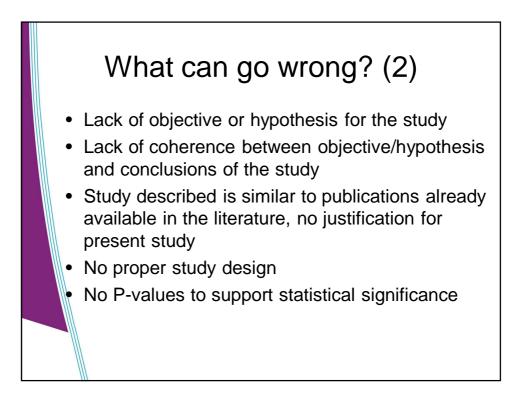


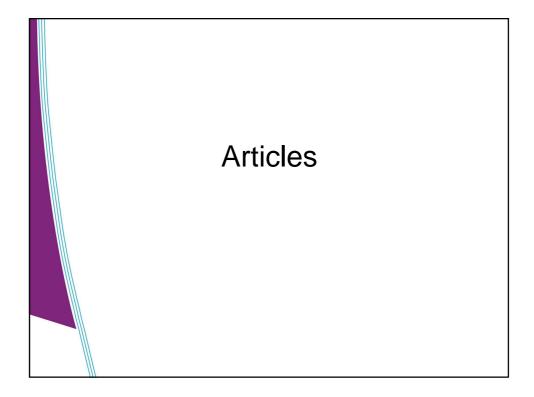


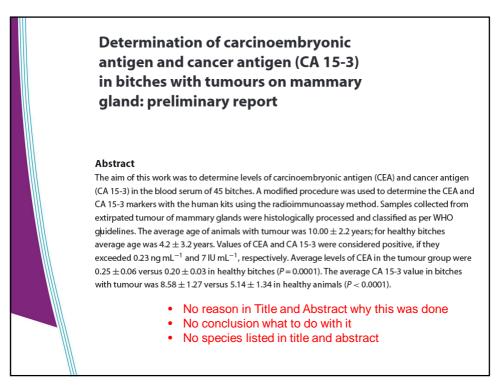

:lsx - Microso voegtoepassi		DF Experte 8 Profe	essional				
Standaard	- •				-	ivoegen + erwijderen +	Σ
∰		Voorwaardelijk opmaak *	als tabel * Stijlen))pmaak ▼ Cellen	4
AA	AB	AC	AD	AE		AF	
Response	DFP	DFPsens	PFS	Cens_			
3	399	0	399	0		1-10-2012	_
3	883	0	883	0		16-4-2012	
3	1377	0	1377	0		8-11-2010	
3	882	1	882	1		20-1-2009	
3	401	0	401	0		11-8-2010	
3	227	0	227	0		27-8-2007	·
3	1475	0	1475	0		28-6-2004	
3	415	0	415	0		atment with	۱p
2			257	1		16-12-2013	3
3	239	1	435	0		8-10-2007	·
1			7	1		6-12-2012	
4			287	0		24-7-2012	

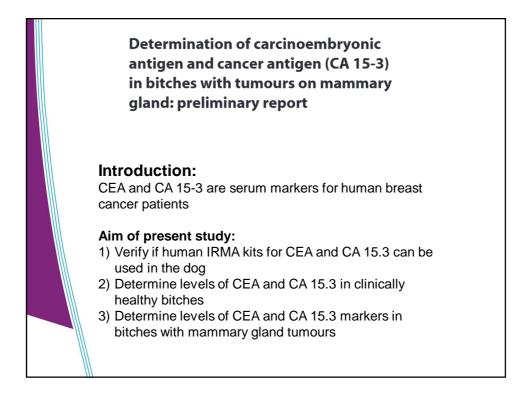


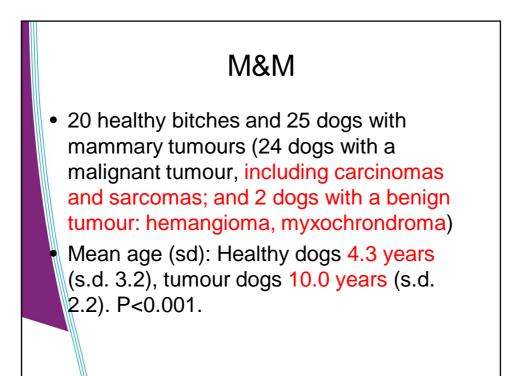


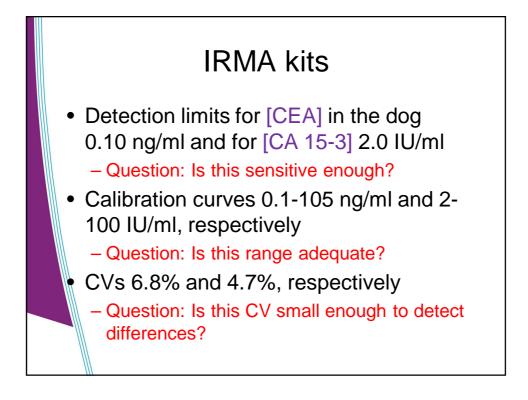


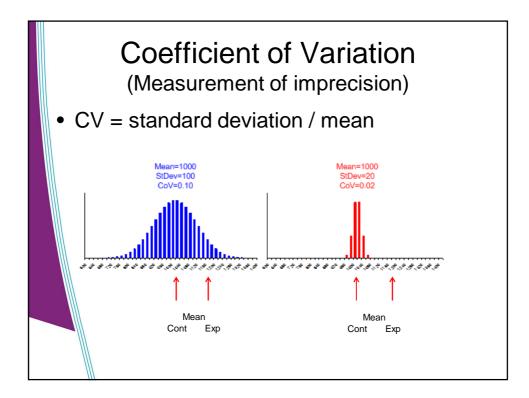


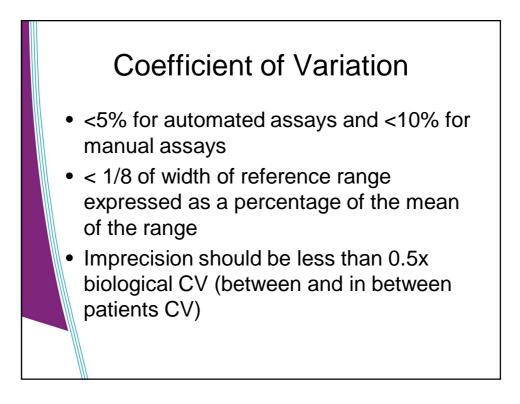












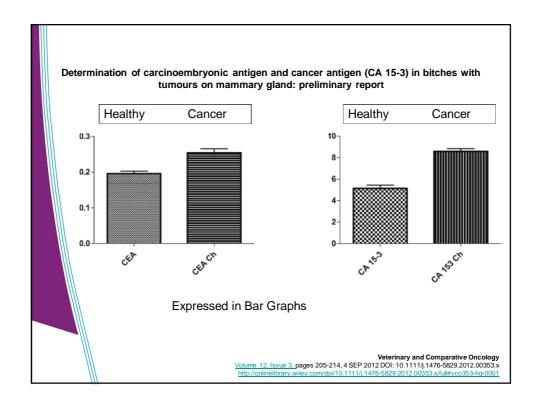
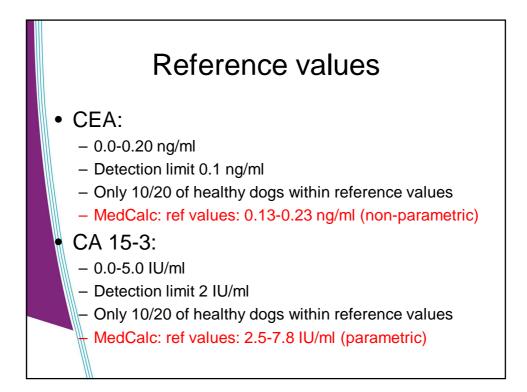


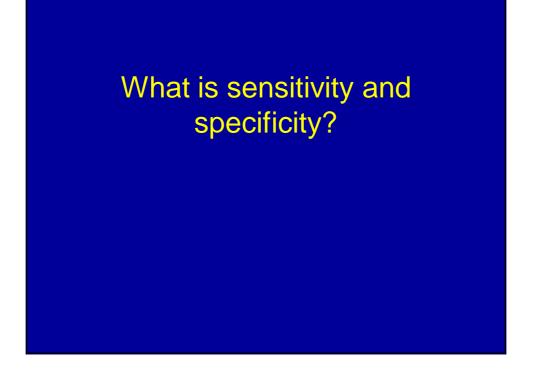

Table 3. Statistical evaluation of the measured CEA and CA

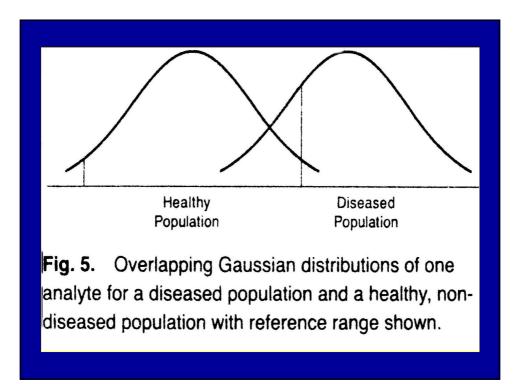
 15-3 values in clinically healthy bitches and bitches with

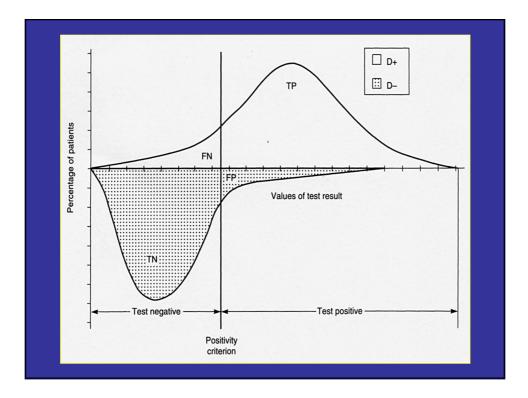
 mammary gland tumour

		c	EA	CA	15-3
		Healthy bitches	Diseased bitches	Healthy bitches	Diseased bitches
N	Ainimum	0.1300	0.1800	3.020	7.100
N	laximum	0.2300	0.4200	7.700	11.20
N	lean	0.1955	0.2538	5.138	8.577
S	D	0.03137	0.05671	1.339	1.270
9	5% Percentile	0.2295	0.4025	6.790	11.19
Cut	off values	0.20-0.2	23	5.0-7.0	
• *	: P<0.001				
• 5	Sensitivity for	CEA to de	etect mamr	nary carci	noma 60%
(CA 15-3 100%	; specific	ity both 95%	6	
	ET: not tested	•			
	ET: Cut-off val		ge, not a ca	alculated s	single valu
C	column statist	ics?)			






	CA 1	5-3 markers in clinica	lly healthy l		CEA and		 Anamnestic data, TNM syste tumour 	iii, averaj	ge values (I CEA/CA	15-5,1
	No.	Personal data	Spayed Yes/No	CEA ng mL ⁻¹	CA 15-3 IU mL ⁻¹	No.	Personal data	Spayed Yes/No	TNM System	CEA ng mL ⁻¹	CA 1 IU m
	1.	JRT, 3 years	N	0.20	3.10			-		5	
	2.	X, 1.5 years	N	0.19	6.10	1.	X, 7 years	N	T1N0M0	0.21	10.
	3.	Beagle, 10 months	N	0.16	4.47	2.	GS, 6 years	N	T1N0M0	0.25	7.
	4.	Poodle , 7 years	N	0.14	5.65	3.	X, 7 years	N	T3N0M0	0.23	8.
	5.	X, 3 years	Y	0.21	5.80	4.	GS, 10 years	N	T2N0M0	0.24	8.
11	6.	American	N	0.13	3.56	5.	X, 7 years	N	T3N0M0	0.23	8.
11		Staffordshire				6.	X, 12 years	N	T2N0M0	1.46	10.
		terrier, 4 years,				7.	Longhaired dachshund, 13 years	N	T1N0M0	0.22	8.
III	7. 8.	GS, 10 months GS, 1 year,	N N	0.22 0.22	6.50 4.70	8.	X, 9 years	N	T2N0M0	0.34	8.
	o. 9.	Doberman	N	0.22	3.26	9.	Slovakian hound, 10.5 years	N	T3N0M0	0.24	8.
	9.	Pinscher, 6 years	D1	0.20	3.20	10.	X, 11 years	N	T3N0M0	0.24	11.
	10.	GS, 1.5 years	N	0.21	5.76	11.	GS, 10 years	N	T2N0M0	0.21	8.
	11.	American	N	0.18	4.37	12.	Cocker Spaniel, 11 years	N	T2N0M0	0.21	8.
		Staffordshire terrier, 10 years				13.	Cocker Spaniel, 10 years	N	T2N0M0	0.22	8.
	12.	Doberman Pinscher, 5 years	N	0.22	7.70	14.	Cocker Spaniel, 9 years	Ν	T2N0M0	0.26	7.
	13.	Doberman	N	0.21	6.64	15.	GS, 13 years	N	T3N0M0	0.25	10.
		Pinscher, 8 years				16.	Cocker Spaniel, 7 years	N	T2N0M0	0.26	8.
	14.	GS, 4–5 years	N	0.22	4.68	17.	Poodle, 12 years	N	T3N0M0	0.22	7.
	15.	RTW, 3 years	N	0.23	6.79	18.	Golden Retriever, 13 years	N	T3N0M0	0.21	11.
	16.	x RTW, 3–4 years	N	0.22	4.75	19.	GS, 9 years	N	T2N0M0	0.28	7.
	17.	Labrador Retriever,	Y	0.22	6.20	20.	Cocker Spaniel, 10 years	N	T1N0M0	0.24	8.
		11 years				21.	X, 9–10 years	N	T2N0M0	0.35	7.
	18.	Tibetan Mastiff,	N	0.20	3.02	22.	Poodle, 14 years	N	T2N0M0	0.20	7.
	10	2 years	N	0.20	5.60	23.	X, 11 years	N	T1N0M0	0.18	8.
	19. 20.	RTW, 2 years Golden Retriever,	N Y	0.20	5.60 4.10	24.	Poodle, 10 years	N	T1N0M0	0.42	8.
	20.	8 years	T	0.13	4.10	25.	X, 9 years	N	T3N0M0	0.35	7.


🔟 📘	117 - (91 + 1⊋			
Bestand			gen Pagi	na-indeling	Formule
- CA-1	*	_			
Ê	oo ⊫⊇ -	Arial	* 10	· A A	= = -
Plakken		BIU	•	<u>- A</u> -	E 8 :
· · ·					
Klembo			Lettertype	E.	
	H6	•	(*	f_x	
	А	В	С	D	E
1 Dog		Malignant	CEA		
2	1		0,2	3,1	
3	2		0,19	6,1	
4	3		0,16	4,47	
5	4		0,14	5,65	
6	5		0,21	5,8	
7	6		0,13	3,56	
8	7		0,22	6,5	
9 10	8		0,22		
	9		0,2	3,26	
11 12	10 11		0,21	5,76 4,37	
12			0,18	4,37	
14	12 13		0,22		
14	13		0,21	4,68	
16	14		0,22	6,79	
17	16		0,22	4,75	
18	17		0,22	6,2	
19	18		0,22	3,02	
20	19		0,2	5,6	
21	20		0,13	4,1	
22	21		0,13	10,42	
23	22		0.25	7.67	
24	23		0,23	8,33	
25	24		0.24	8,19	
26	25		0,23	8,1	
27	26		1,46	10,43	
28	27		0,22	8,35	
29	28		0,34	8,75	
30	29		0,24	8,31	
			L -1L		

Measurements	CEA		Measurements CA15_3	
Sample size		20	Sample size	2
Lowest value		0.1300	Lowest value	3.020
lighest value		0.2300	Highest value	7.700
Arithmetic mean		0,1955	Arithmetic mean	5.137
Median		0,2050	Median	5,175
Standard deviation		0,03137	Standard deviation	1.339
Coefficient of Skew	vness	-1,2179 (P=0,0224)	Coefficient of Skewness	-0,01178 (P=0,9805
Coefficient of Kurto	osis	0,3154 (P=0,5796)	Coefficient of Kurtosis	-0.8567 (P=0.3280
Shapiro-Wilk test for Normal distribut	tion	W=0,8133 reject Normality (P=0,0014)	Shapiro-Wilk test for Normal distribution	W=0,962 accept Normality (P=0,6031
Suspected outlier	sa		Suspected outliers ^a	
None Reed, 1971.			Suspected outliers ^a None ^a Reed, 1971.	
None Reed, 1971. 95% Reference int	terval, Doul		None	puble-sided
None ¹ Reed, 1971. 95% Reference int A. Method based o	terval, Doul	stribution	None ^a Reed, 1971. 95% Reference interval, Do A. Method based on Normal	distribution
None Reed, 1971. 95% Reference int A. Method based o Lower limit	terval, Doul	stribution 0,1340	None ^a Reed, 1971. 95% Reference interval, Do A. Method based on Normal Lower limit	distribution
None Reed, 1971. 95% Reference int A. Method based o Lower limit 90% Cl	terval, Doul	stribution 0,1340 0,1137 to 0,1544	None ^a Reed, 1971. 95% Reference interval, Do A. Method based on Normal Lower limit 90% Cl	distribution 2,512 1,6445 o 3,380
None Reed, 1971. 95% Reference int A. Method based o Lower limit 90% Cl Upper limit	terval, Doul	tribution 0,1340 0,1137 to 0,1544 0,2570	None ^a Reed, 1971. 95% Reference interval, Do A. Method based on Normal Lower limit 90% Cl Upper limit	distribution 1,6445 0 3,380 7,762
None Reed, 1971. 95% Reference int A. Method based o .ower limit 90% Cl Jpper limit 90% Cl	terval, Doul	tribution 0,1340 0,1137 to 0,1544 0,2570 0,2366 to 0,2773	None ^a Reed, 1971. 95% Reference interval, Do A. Method based on Normal Lower limit 90% Cl	distribution 2,512 1,6445 o 3,380
None Reed, 1971. 95% Reference int A. Method based o Lower limit 90% Cl Upper limit 90% Cl B. Non-parametric	terval, Doul	tribution 0,1340 0,1137 to 0,1544 0,2570 0,2366 to 0,2773 rethod (CLSI C28-A3)	None ^a Reed, 1971. 95% Reference interval, Do A. Method based on Normal Lower limit 90% Cl Upper limit 90% Cl	distribution 1,6445 6,8944 to 8,657
None Reed, 1971. 25% Reference int A. Method based o Lower limit 90% Cl Upper limit 90% Cl B. Non-parametric Lower limit	terval, Doul	tribution 0,1340 0,1137 to 0,1544 0,2570 0,2366 to 0,2773	None ^a Reed, 1971. 95% Reference interval, Do A. Method based on Normal Lower limit 90% Cl Upper limit	distribution 1,6445 6,8944 to 8,630 e method (CLSI C28-A3)
None Reed, 1971. 5% Reference int 5% Reference int 10% Cl 10% Cl 3. Non-parametric 10% Cl 3. Non-barametric 10% Cl	terval, Doul	stribution 0,1340 0,1137 to 0,1544 0,2570 0,2366 to 0,2773 wethod (CLSI C28-A3) 0,1300	None ^a Reed, 1971. 95% Reference interval, Do A. Method based on Normal Lower limit 90% Cl Upper limit 90% Cl B. Non-parametric percentile	distribution 1,6445 6,8944 to 8,650
None Reed, 1971. 95% Reference int A. Method based o Lower limit 90% Cl Upper limit 90% Cl B. Non-parametric	terval, Doul	tribution 0,1340 0,1137 to 0,1544 0,2570 0,2366 to 0,2773 rethod (CLSI C28-A3)	None ^a Reed, 1971. 95% Reference interval, Do A. Method based on Normal Lower limit 90% Cl Upper limit 90% Cl B. Non-parametric percentile Lower limit	distribution 1,6445 6,8944 to 8,650 e method (CLSI C28-A3)

Sensitivity:

Percentage of diseased animals with a positive test result

Specificity:

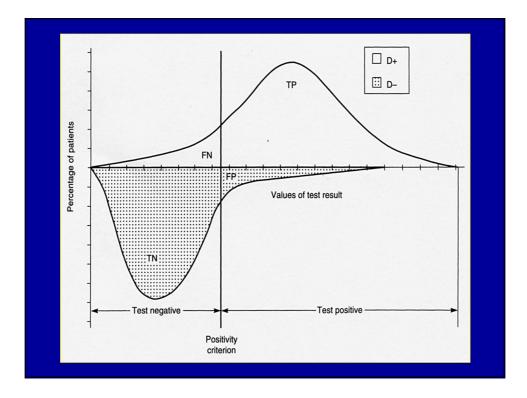
Percentage of healthy animals with a negative test result

	DIS	EASE	
TEST	Present	Absent	Total
Positive	а	b	a+b
Negative	С	d	c+d
Total	a+c	b+d	a+b+c+d
Sensitivity: a/(a+c Specificty: d/(b+c Total Accuracy: (a-	d)	J)	

Positive predictive value:

Probability of the presence of disease when test result is positive

Negative predictive value:

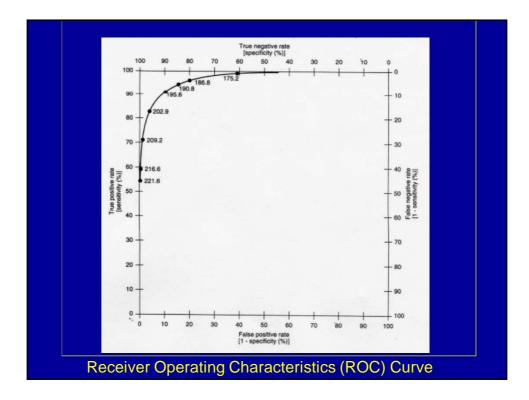

Probability of the absence of disease when test result is negative

	DIS	EASE	
TEST	Present	Absent	Total
Positive	а	b	a+b
Negative	С	d	c+d
Total	a+c	b+d	a+b+c+d
Sensitivity: a/(a+	c) Pos	itive predictiv	ve value: a/(a+l
Specificty: d/(b+ Total Accuracy: (a	· · ·		ve value: d/(c+

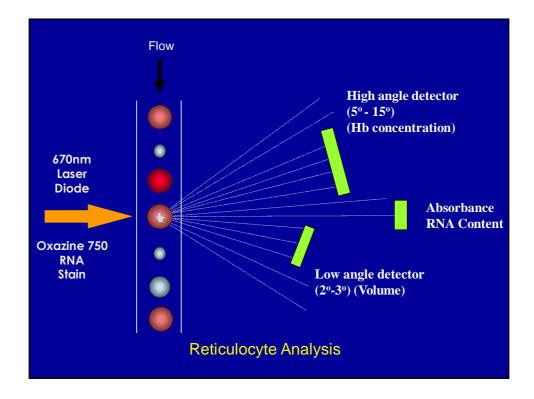
- Sensitivity and specificity are test characteristics: they remain the same when test in repeated under same conditions
- Predictive values are dependent on prevalence of disease in population tested

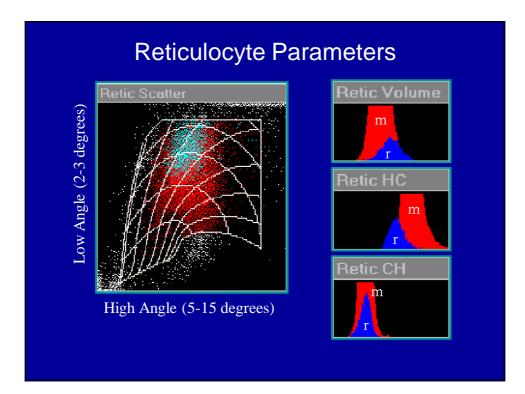
	DISEAS	E	
TEST	Positive	Negative	Pred Value
Positive	225	225	225/450= 50%
Negative	25	525	525/550=
			95%
	Se = 225/250	Sp = 525/7	50
	= 90%	= 70%	

	DISEAS	E	
TEST	Positive	Negative	Pred Value
Positive	225	29925	225/30150= 0.75%
Negative	25	69825	69825/69850=
			99.96%
	Se = 225/250	Sp = 69825	5/99750
	= 90%	= 70%	


Relation sensitivity – specificity:

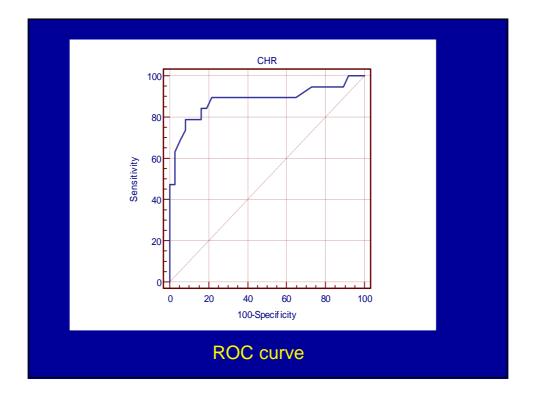
Inverse:

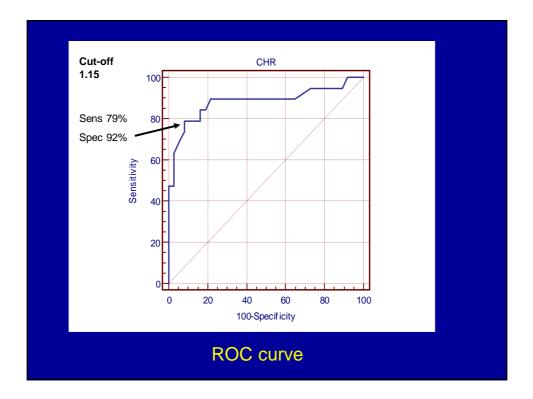

increasing sensitivity will decrease specificity


What is best cut-off point?

=> Use of Receiver Operating Characteristics (ROC) Curve

Example


Iron deficiency is associated with decreased reticulocyte hemoglobin content (CHr)


Ref value CHr in dogs is 1.595 - 2.427 mmol/l

Study: group dogs with anaemia due to Fe def compared to group dogs with anaemia due to other reasons

Question: what is the best cut-off point for diagnosing Fe deficiency?

Criterion	Sens. (95% C.I.)	Spec. (95% C.I.)	+LR	-LR
< 0,89	0,0 (0,0- 17,8)	100,0 (90,4-100,0)		1,00
<=1,01	47,4 (24,5- 71,1)	100,0 (90,4-100,0)		0,53
<=1,04	47,4 (24,5- 71,1)	97,3 (85,8- 99,5)	17,53	0,54
<=1,12	63,2 (38,4- 83,6)	97,3 (85,8- 99,5)	23,37	0,38
<=1,13	68,4 (43,5- 87,3)	94,6 (81,8- 99,2)	12,66	0,33
<=1,14	73,7 (48,8- 90,8)	91,9 (78,1- 98,2)	9,09	0,29
<=1,15	78,9 (54,4- 93,8)	91,9 (78,1- 98,2)	9,74	0,23
<=1,26	78,9 (54,4- 93,8)	83,8 (68,0- 93,8)	4,87	0,25
<=1,28	84,2 (60,4- 96,4)	83,8 (68,0- 93,8)	5,19	0,19
<=1,32	84,2 (60,4- 96,4)	81,1 (64,8- 92,0)	4,45	0,19
<=1,33	89,5 (66,8- 98,4)	78,4 (61,8- 90,1)	4,14	0,13
<=1,56	89,5 (66,8- 98,4)	35,1 (20,2- 52,5)	1,38	0,30
<=1,57	94,7 (73,9- 99,1)	27,0 (13,8- 44,1)	1,30	0,19
<=1,75	94,7 (73,9- 99,1)	10,8 (3,1- 25,4)	1,06	0,49
<=1,77	100,0 (82,2-100,0)	8,1 (1,8- 21,9)	1,09	0,00
<=2	100,0 (82,2-100,0)	0,0 (0,0- 9,6)	1,00	

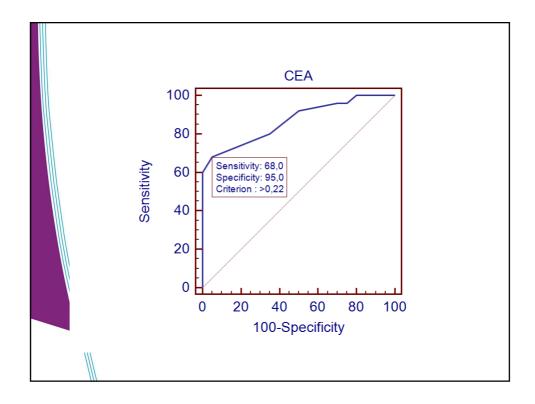
Criterion	Sens. (95% C.I.)	Spec. (95% C.I.)	+LR	-LR
< 0,89	0,0 (0,0- 17,8)	100,0 (90,4-100,0)		1,00
<=1,01	47,4 (24,5- 71,1)	100,0 (90,4-100,0)		0,53
<=1,04	47,4 (24,5- 71,1)	97,3 (85,8- 99,5)	17,53	0,54
<=1,12	63,2 (38,4- 83,6)	97,3 (85,8- 99,5)	23,37	0,38
<=1,13	68,4 (43,5- 87,3)	94,6 (81,8- 99,2)	12,66	0,33
<=1,14	73,7 (48,8- 90,8)	91,9 (78,1- 98,2)	9,09	0,29
<=1,15 *	78,9 (54,4- 93,8)	91,9 (78,1- 98,2)	9,74	0,23
<=1,26	78,9 (54,4- 93,8)	83,8 (68,0- 93,8)	4,87	0,25
<=1,28	84,2 (60,4- 96,4)	83,8 (68,0- 93,8)	5,19	0,19
<=1,32	84,2 (60,4- 96,4)	81,1 (64,8- 92,0)	4,45	0,19
<=1,33	89,5 (66,8- 98,4)	78,4 (61,8- 90,1)	4,14	0,13
<=1,56	89,5 (66,8- 98,4)	35,1 (20,2- 52,5)	1,38	0,30
<=1,57	94,7 (73,9- 99,1)	27,0 (13,8- 44,1)	1,30	0,19
<=1,75	94,7 (73,9- 99,1)	10,8 (3,1- 25,4)	1,06	0,49
<=1,77	100,0 (82,2-100,0)	8,1 (1,8- 21,9)	1,09	0,00
<=2	100,0 (82,2-100,0)	0,0 (0,0- 9,6)	1,00	

Conclusions

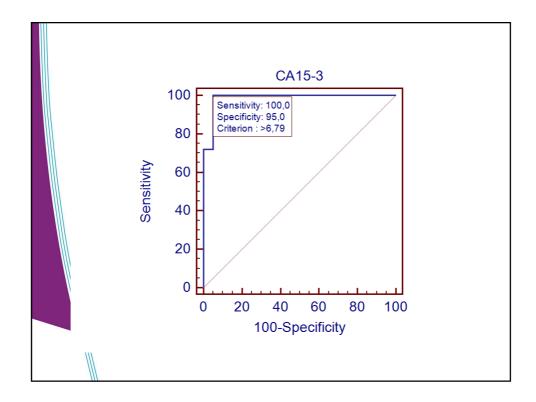
- Ref value CHr is 1.595 2.427 mmol/l
- As test to detect Relative Iron defeciency as cause of non-regenerative anemia:
 - For cut-off <1.15 mmol/l
 - Sensitivity is 79% (95% CI 64,4-93.8)
 - Specificity is 92% (95% CI 78.1-98.2)

Table 3. Statistical evaluation of the measured CEA and CA

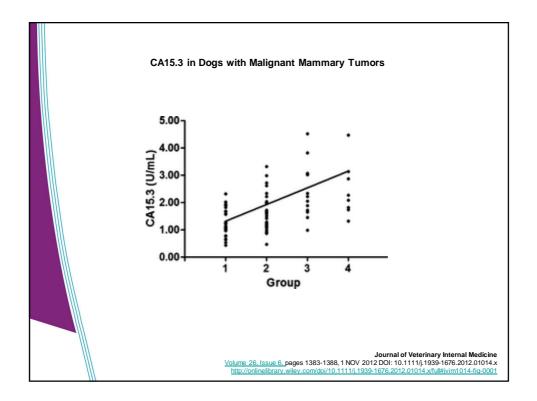
 15-3 values in clinically healthy bitches and bitches with

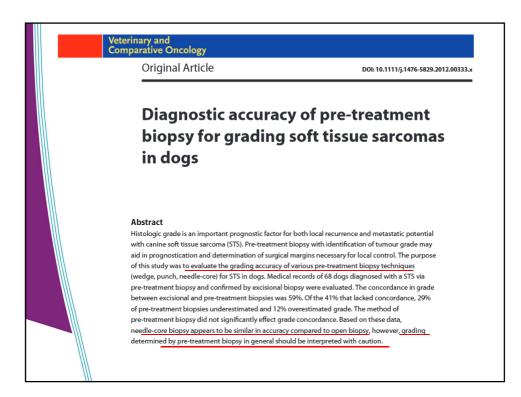

 mammary gland tumour

	c	EA	CA	15-3
	Healthy bitches	Diseased bitches	Healthy bitches	Diseased bitches
Minimum	0.1300	0.1800	3.020	7.100
Maximum	0.2300	0.4200	7.700	11.20
Mean	0.1955	0.2538	5.138	8.577
SD	0.03137	0.05671	1.339	1.270
95% Percentile	0.2295	0.4025	6.790	11.19
ut off values	0.20-0.2	23	5.0-7.0	


- Sensitivity for *CEA* to detect mammary carcinoma 60% and for *CA 15-3* 100%; specificity both 95%
- ET: not tested in benign tumours!!!!!!!
- ET: Cut-off values a range, not a calculated single value! (Due to column statistics?)

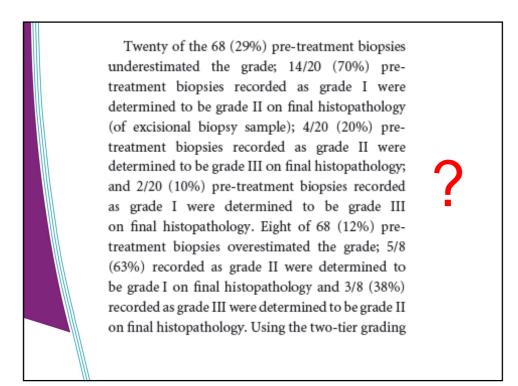
Daking ROC curve Based on data in Table 1 and 2 Put into Excel file Calculate ROC curves with statistical programme like MedCalc or Analyse-IT

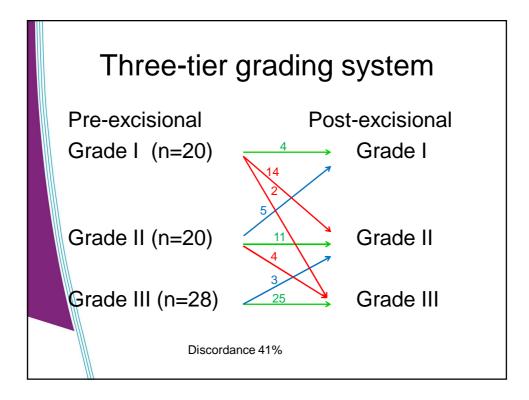

Variable		CEA				
Classification	n variable	Valignant			Dat	a of Ta
Sample size	•			45		Table
Positive grou	up: Malignant	= 1		25		O articl
Negative gro	up : Malignant	= 0		20		d to ma
Disease prev	valence (%)			unknown		C curve
Area under t	he ROC curve (Al	JC)		0,868		
Standard Err	ror ^a			0,0517		
95% Confide	ence Interval ^b			0,734 to 0,950		
z statistic				7,122		
Significance ^a DeLong et al., ^b Binomial exact		5)		0,0001		
^a DeLong et al., ^b Binomial exact Criterion va	1988 Ilues and coordi	nates of the ROC		· · · · · · · · · · · · · · · · · · ·	+I R	-I R
^a DeLong et al., ^b Binomial exact Criterion va Criterion	1988 Ilues and coordi	nates of the ROC 95% Cl	Specificity	95% CI	+LR 1 00	-LR
^a DeLong et al., ^b Binomial exact Criterion va	1988 Ilues and coordi	nates of the ROC		95% Cl 0,0 - 16,8	1,00	-LR
^a DeLong et al., ^b Binomial exact Criterion va Criterion >=0,13	1988 Ilues and coordi Sensitivity 100,00	nates of the ROC 95% Cl 86,3 - 100,0	Specificity 0,00	95% CI		
^a DeLong et al., ^b Binomial exact Criterion va >=0,13 >0,16	1988 Ilues and coordi Sensitivity 100,00 100,00	nates of the ROC 95% Cl 86,3 - 100,0 86,3 - 100,0	Specificity 0,00 20,00	95% Cl 0,0 - 16,8 5,7 - 43,7	1,00 1,25	0,00
^a DeLong et al., ^b Binomial exact Criterion va >=0,13 >0,16 >0,18	1988 Ilues and coordi Sensitivity 100,00 100,00 96,00	nates of the ROC 95% Cl 86,3 - 100,0 86,3 - 100,0 79,6 - 99,9	Specificity 0,00 20,00 25,00	95% Cl 0,0 - 16,8 5,7 - 43,7 8,7 - 49,1	1,00 1,25 1,28	0,00 0,16
^a DeLong et al., ^b Binomial exact Criterion va Criterion >=0,13 >0,16 >0,18 >0,19	1988 Ilues and coordi Sensitivity 100,00 100,00 96,00 96,00	nates of the ROC 95% Cl 86,3 - 100,0 86,3 - 100,0 79,6 - 99,9 79,6 - 99,9	Specificity 0,00 20,00 25,00 30,00	95% Cl 0,0 - 16,8 5,7 - 43,7 8,7 - 49,1 11,9 - 54,3	1,00 1,25 1,28 1,37	0,00 0,16 0,13
^a DeLong et al., ^b Binomial exact Criterion va S=0,13 >0,16 >0,18 >0,19 >0,2	1988 Sensitivity 100,00 100,00 96,00 96,00 92,00	nates of the ROC 95% Cl 86,3 - 100,0 86,3 - 100,0 79,6 - 99,9 79,6 - 99,9 74,0 - 99,0	Specificity 0,00 20,00 25,00 30,00 50,00	95% Cl 0,0 - 16,8 5,7 - 43,7 8,7 - 49,1 11,9 - 54,3 27,2 - 72,8	1,00 1,25 1,28 1,37 1,84	0,00 0,16 0,13 0,16
^a DeLong et al., ^b Binomial exact Criterion va Criterion >=0,13 >0,16 >0,18 >0,18 >0,19 >0,2 >0,24	1988 Sensitivity 100,00 96,00 96,00 92,00 80,00	nates of the ROC 95% Cl 86,3 - 100,0 79,6 - 99,9 79,6 - 99,9 74,0 - 99,0 59,3 - 93,2	Specificity 0,00 20,00 25,00 30,00 50,00 65,00	95% Cl 0,0 - 16,8 5,7 - 43,7 8,7 - 49,1 11,9 - 54,3 27,2 - 72,8 40,8 - 84,6	1,00 1,25 1,28 1,37 1,84 2,29	0,00 0,16 0,13 0,16 0,31



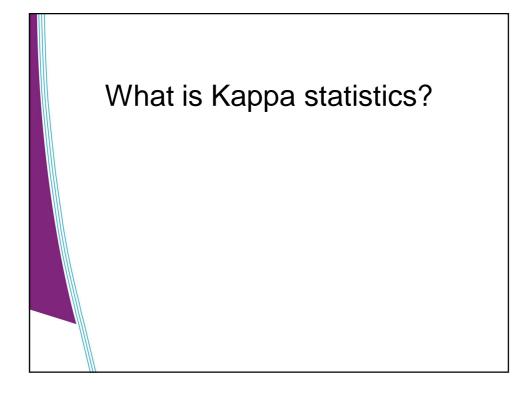
Variable		CA15_3 CA15-3				
Classification	n variable	Malignant				
Sample size				45		
Positive grou	ıp: Malignan	t = 1		25		
Negative gro	up : Malignan	t = 0		20		
Disease prev	valence (%)			unknown		
Area under t	he ROC curve (A	UC)		0,986		
Standard Err				0,0147		
95% Confide	ence Interval ^b			0,896 to 1,000		
z statistic				32,992		
Significance	level P (Area=0.	5)		0,0001		
^a DeLong et al., ^b Binomial exact Criterion va		linates of the ROC	curve [Hide]			
Criterion	Sensitivity	95% CI	Specificity	95% CI	+LR	-LR
>=3,02	100,00	86,3 - 100,0	0,00	0,0 - 16,8	1,00	
C 70 *	100,00	86,3 - 100,0	95,00	75,1 - 99,9	20,00	0,00
>6,79 *	72,00	50,6 - 87,9	95,00	75,1 - 99,9	14,40	0,29
7,67		50.6 - 87.9	100,00	83,2 - 100,0		0,28
	72,00	00,0 01,0				

J Vet	Intern Med 2012;26:1383–1388	Concurrent study	
CA	A15.3, CEA, and LDH	I in Dogs with Malig	nant Mammary Tumors
L		strela-Lima, J.C. Melgaço de Fa É.M.L. Rabelo, A.F.D. Vieira d	ria, J.E. Guimarães, Á.P. Dutra, a Costa, and G.D. Cassali
		and CA15.3 serum s I, II, III, and IV (1	
	Group (n)	CEA (ng/mL)	CA15.3 (ng/mL)
	Group I (30)	0.19 ± 0.20 ^(a)	1.19 ± 0.51 ^(a)
	Group II (40)	0.12 ± 0.12 ^(a)	1.61 ± 0.61 ^(b)
	Group III (12)	$0.29 \pm 0.36^{(a)}$	2.39 ± 1.02 (c)
	Group IV (8)	0.07 ± 0.04 ^(a)	2.46 ± 1.00 ^(c) to I and II
	fer statistically with mammary cancer; a without metastasis;	red by different letters in <i>P</i> -value < .05. Group I group II: female dogs w group III: female dogs w nale dogs with nonreg	: female dogs without vith mammary cancer with regional metasta-
			Journal of Veterinary Internal Medicine -1388, 1 NOV 2012 DOI: 10.1111/j.1939-1676.2012.01014.x oj/10.1111/j.1939-1676.2012.01014.x/full#jvjim1014-fio-0001_




Hypotheses

- Concordance between the grade of pre-treatment and excisional biopsies regardless of tumour location, time interval between biopsy and excision?
- Larger biopsy samples (i.e. wedge biopsies) provide a more accurate means of determining tumour grade relative to less invasive (needle core, punch biopsy) techniques?



(excisional biopsy)	gold standard	
	Needle core	Punch	Wedge
n	19	7	(44)
Adequate (%)	100	100	95
Accuracy (%)	58	57	61
There was no stat between these bio Applies for Three-	ppsy techniques.	n the grading	accuracy

re-treatment biopsy	Excisional biopsy	Tru-Cut (<i>n</i> = 19)	Punch $(n=7)$	Wedge (<i>n</i> = 42)	All (n = 68)
ligh grade	High grade	0	0	3	3
ligh grade	Low grade	1	0	2	3
ow grade	High grade	2	1	3	6
ow grade	Low grade	16	6	34	56
1					
	Tru-Cut <i>n</i> = 19	Punch $n = 7$	Wedge $n = 42$	All n = 68 (95% CI)	
Discordance	16%	14%	12%	13% (7-23%)	
roportion of discordant results	5%	0%	5%	4%	
that overestimate grade					
roportion of discordant results	11%	14%	7%	9%	
that underestimate grade					
appa statistic	-0.08	NA	0.48	0.33 (0.0-0.66)	
	igh grade ligh grade ow grade ow grade liscordance roportion of discordant results that overestimate grade roportion of discordant results rethat underestimate grade	igh grade High grade ligh grade Low grade ow grade High grade ow grade Low grade Tru-Cut <i>n</i> = 19 Viscordance 16% roportion of discordant results 5% that overestimate grade roportion of discordant results 11%	ligh grade High grade 0 ligh grade Low grade 1 ow grade High grade 2 ow grade Low grade 16 Tru-Cut n = 19 Punch n = 7 Viscordance 16% 14% roportion of discordant results 5% 0% that overestimate grade 11% 14% that underestimate grade 11% 14%	ligh grade High grade 0 0 ligh grade Low grade 1 0 ow grade High grade 2 1 ow grade Low grade 16 6 Tru-Cut $n = 19$ Punch $n = 7$ Wedge $n = 42$ biscordance 16% 14% 12% roportion of discordant results 5% 0% 5% that overestimate grade Trub the structure structure grade 11% 14%	ligh grade High grade 0 0 3 ligh grade Low grade 1 0 2 ow grade High grade 2 1 3 ow grade Low grade 16 6 34 Tru-Cut $n = 19$ Punch $n = 7$ Wedge $n = 42$ All $n = 68$ (95% Cl) Viscordance 16% 14% 12% 13% (7-23%) roportion of discordant results 5% 0% 5% 4% that overestimate grade Trub content results 11% 14% 7% 9%

Reliability

In the absence of a 'Gold' standard:

- Agreement with other tests
- Repeatability / test retest agreement
 - intra-observer variability
 - inter-observer variability

	Patl	hologist B	
	Tumour	Tumour	Total
Pathologist A	Positive	Negative	
umour positive		7	9
umour negative	3	88	91
Total	5	95	100

<u>Set #2</u>				
	Patt	hologist B		
	Tumour	Tumour	Total	
Pathologist A	Positive	Negative		
Tumour positive	40	6	46	
Tumour negative	12	42	54	
Total	52	48	100	

Observed agreement: $(40+42)/100 \times 100\% = 82\%$

<u>Set #1</u>				
	Path	nologist B		
	Tumour	Tumour	Total	
Pathologist A	Positive	Negative		
Tumour positive			9	
Tumour negative			91	
Total	5	95	100	
Chance agreement:				

	Patholo	ogist B	
	Tumour Tumour T		Total
Pathologist A	Positive	Negative	
Tumour positive	(5%x9%)x100	(95%x9%)x100	9
	0.45	8.55	
Fumour negative	(5%x91%)x100	(95%x91%)x100) 91
	4.55	86.45	
Total	5	95	100

<u>Set #1</u>			
	Tumour	Tumour	Total
Pathologist A	Positive	Negative	
Tumour positive	(5%x9%)x100	(95%x9%)x100	9
	0.45	8.55	
Tumour negative	(5%x91%)x100	(95%x91%)x100	91
	4.55	86.45	
Total	5	95	100

Chance agreement: (0.45+86.45)/100 x 100% = 86.9%

<u>Set #2</u>	2			
	Pathologist B			
	Tumour	Tumour	Total	
Pathologist A	Positive	Negative		
Tumour positive			46	
Tumour negative			54	
Total	52	48	100	
Chance agreement:				

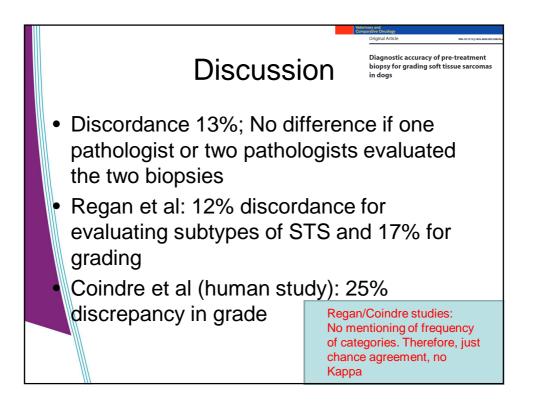
	Total
Pathologist A Positive Negative	
Tumour positive (52%x46%)x100 (48%x46%)x100	46
=23.9 =22.1	
Tumour negative (52%x54%)x100 (48%x54%)x100	54
=28.1 =25.9	
Total 52 48 1	100

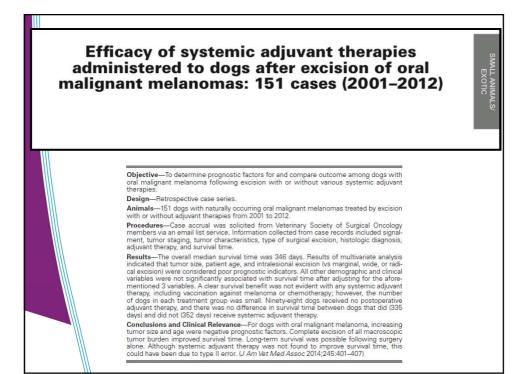
	Pathologist B			
	Tumour	Tumour	Total	
Pathologist A	Positive	Negative		
Tumour positive	(52%x46%)x100	(48%x46%)x100	46	
	=23.9	=22.1		
Tumour negative	(52%x54%)x100	(48%x54%)x100	54	
	=28.1	=25.9		
Total	52	48	100	

Indicates the degree of agreement between two or more tests, excluding chance agreement

Kappa = (Pobserved - Pchance)/(1-Pchance)

Kappa Set #1:

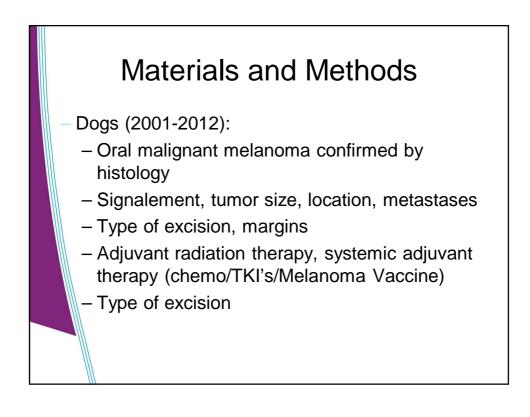

 $(P_{obs} - P_{cha})/(100 - P_{cha}) =$ (90 - 86,9)/13.1 = 3.1/13.1 = 0.237

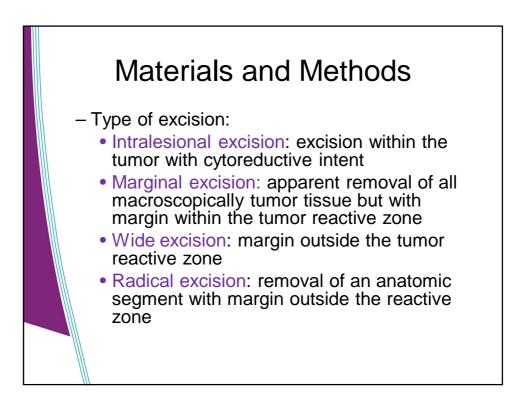

Kappa Set #2:

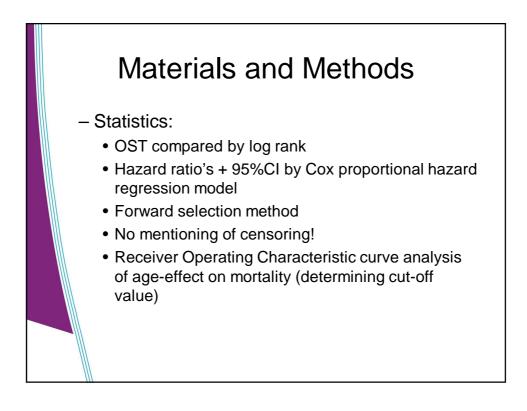
 $(P_{obs} - P_{cha})/(100 - P_{cha}) =$ (82 - 49,8)/50,2 = 32.2/50,2= 0.641

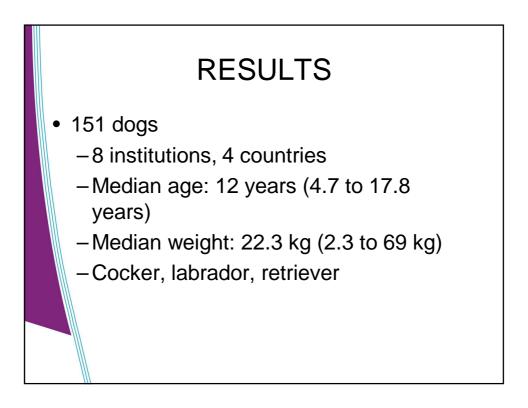
				Veterinary and Comparative Oncology Original Article	DOI: 10.11115;1476-5829.2013.08223	
				Diagnostic accuracy of pre-treatment biopsy for grading soft tissue sarcomas in dogs		
Pre-treatment Biopsy	Excisional Biopsy					
	High Grade	Low Grade				
High Grade	3	3		6		
Low Grade	6	56		62		
	9	59		68		
Kappa: (P _{obs} – P _{cha})/(100-P _{cha}) = (86,7 – 80,3)/19,7 = 0.325 (=poor) Kappa: 0.33 (95%CI: 0.0-0.66)			Landis and Koch: Kappa < 0.4: poor Kappa 0.4-0.6: moderate Kappa 0.6-0.8: good Kappa >0.8: excellent		ł	

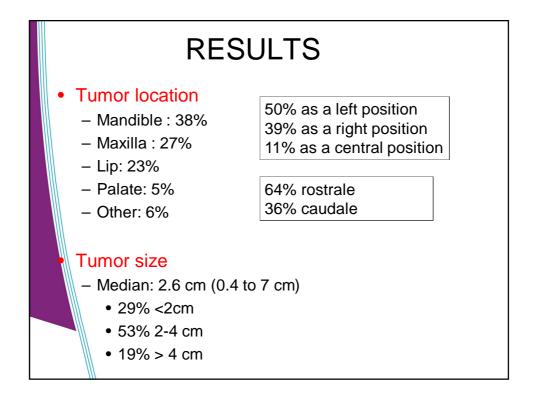
		-	Comparison Goodlegy Original Article Diagnostic accuracy of p biopsy for grading soft in dogs		
Pre-treatment Biopsy	Excisional Biopsy				
	High Grade	Low Grade			
High Grade	3	3	6		
Low Grade	6	56	62		
	9	59	68		
Sensitivity for detecting HG lesions: 3/9 = 33% Specificity: 56/59=95% Discussion: "A diagnosis of high grade can be believed but a diagnosis of low grade cannot" However: Pos Pred Val = 50% and Neg Pred Val= 90.3% !					

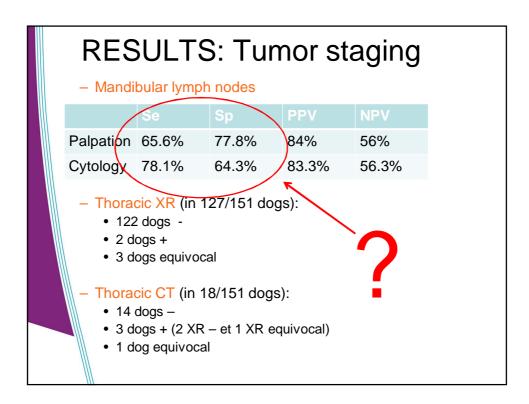







- To determine prognostic factors
- To compare outcomes between surgery alone and surgery + systemic adjuvant therapies


RETROSPECTIVE MULTICENTERS STUDY



Discussion

- Given the low sensitivity and specificity of both lymph node palpation and cytologic evaluation for detection of metastatic disease in dogs with oral malignant melanoma in the present study, routine (histologic) biopsy of lymph nodes is recommended for lymph node staging.
 - Unexpected low accuracy for cytology Not much known in other studies in veterinary medicine What is known in human medicine? => literature search

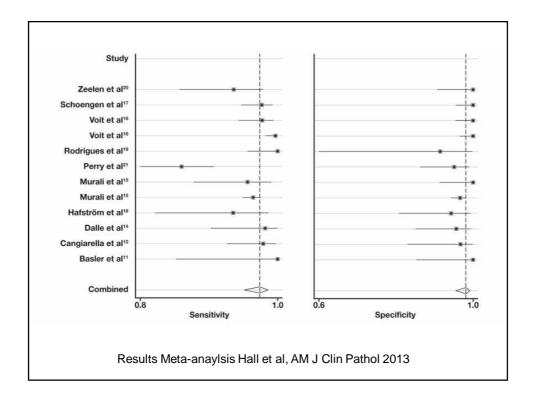
Fine-Needle Aspiration Cytology for the Diagnosis of Metastatic Melanoma

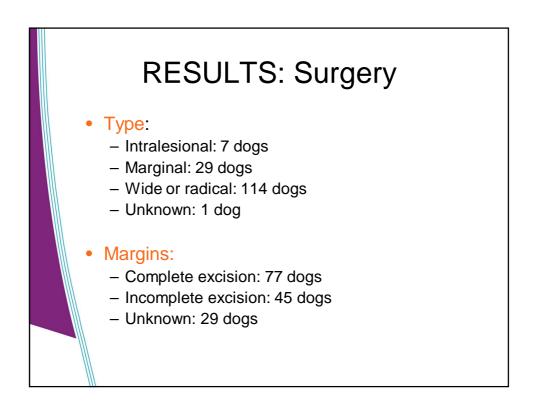
Systematic Review and Meta-Analysis

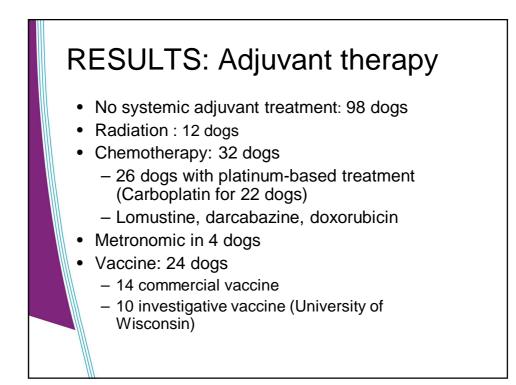
Brian J. Hall, MD, $^{\rm l}$ Robert L. Schmidt, MD, PhD, MBA, $^{\rm l}$ Rohit R. Sharma, MD, $^{\rm 2}$ and Lester J. Layfield, MD $^{\rm l}$

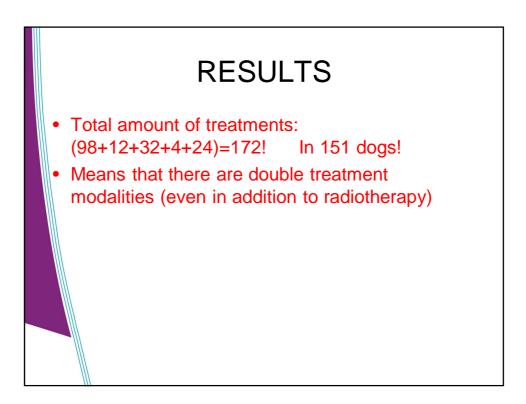
From the ¹Department of Pathology, University of Utah School of Medicine, Salt Lake City; and ²Department of Surgery, University of Texas Southwestern Medical School, Dallas.

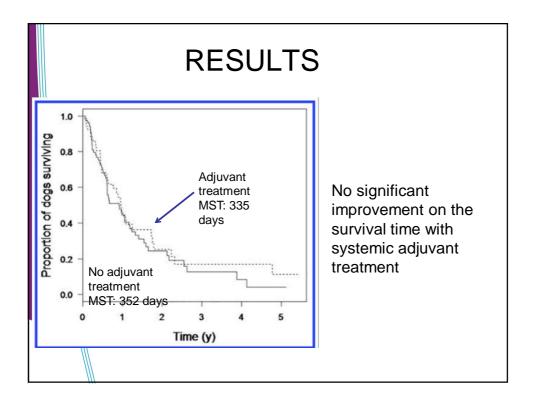
Key Words: Melanoma; Metastatic melanoma; AP cytopathology; Fine-needle aspiration; Meta-analysis; Systematic review; Surgical oncology DOI: 10.1304/JCPWSDDHLUW40WI

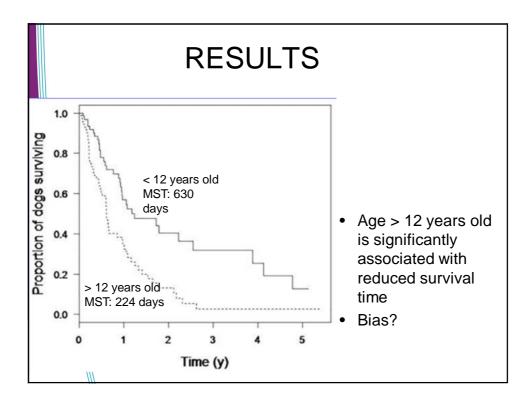

ABSTRACT

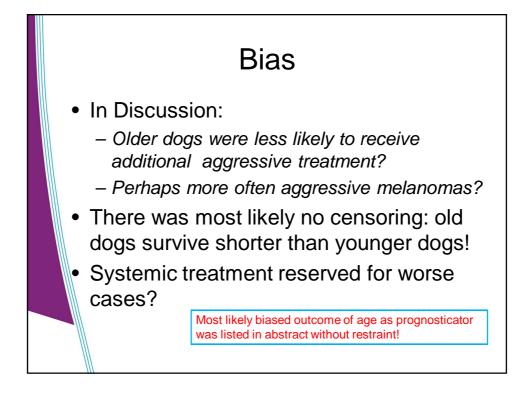

Objectives: To perform a thorough review and meta-analysis of studies that have shown non-image-guided fine-needle aspiration cytology (FNAC) to be highly sensitive and specific for assessing questionable metastatic melanoma to lymph nodes.

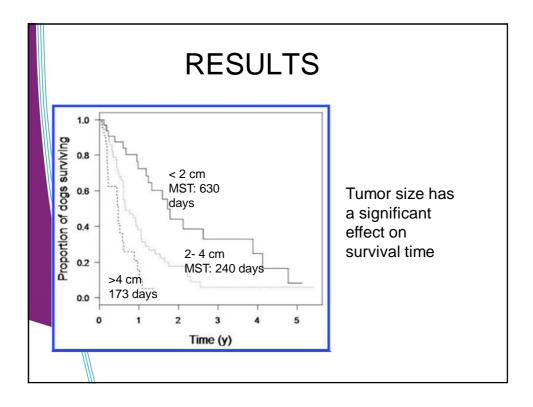

Methods: MEDLINE and Scopus were searched for potentially relevant articles with a search string including the words "melanoma" and "fine needle." All relevant articles were screened by two authors (B.J.H. and R.L.S.). Full articles were screened for extractable data, and the data was pooled for analysis. **Conclusions:** With a sensitivity and specificity of 0.97 and 0.99, the overall diagnostic accuracy of FNAC for metastatic melanoma is quite high, and with a positive and negative likelihood ratio of 58 and 0.03, FNAC for metastatic melanoma should be the first-line option in a patient with a clinically suspected mass and a history of melanoma.

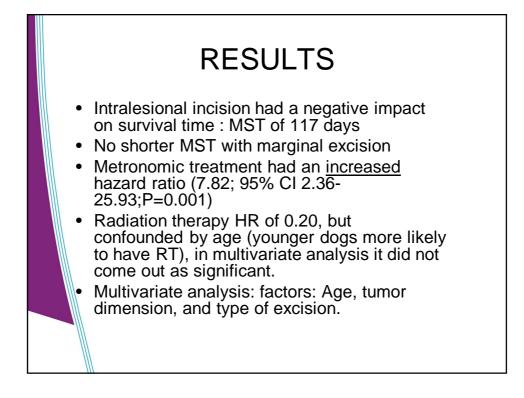

Am J Clin Pathol 2013;140:635-642

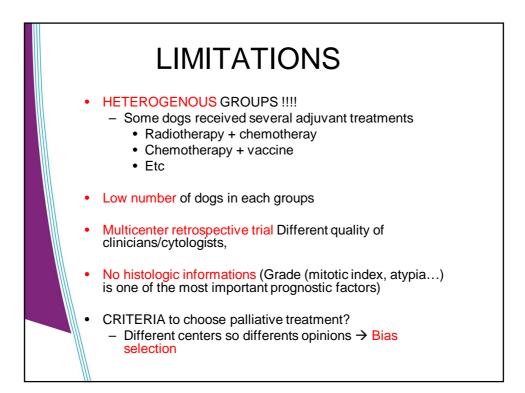

CME/SAN

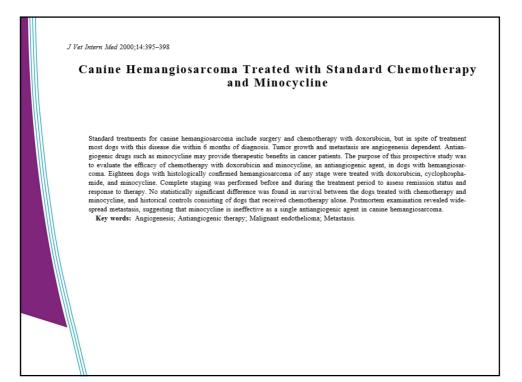


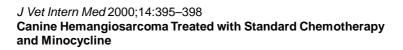












Remarkable facts from discussion

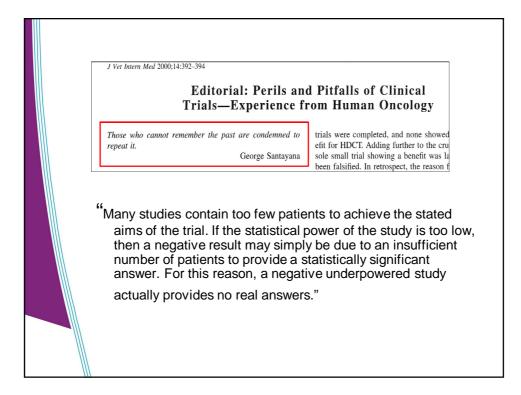
- Routine cytology not recommended
- Dissection of contralateral lymph node recommended: no data on frequency!
- Median OST 346 days; with 29% of dogs living >1 year: => means that between 346-365 days 21% of dogs die!!!!

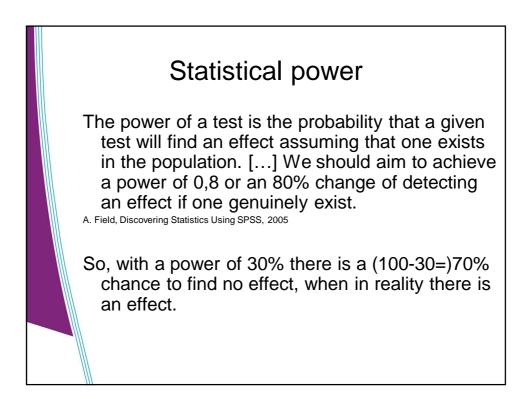
Post hoc analysis: low statistical power (13.5%)

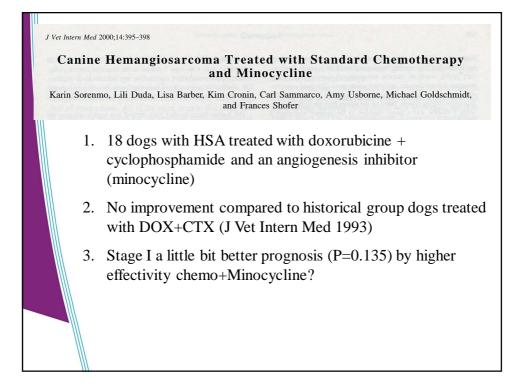
Abstract:

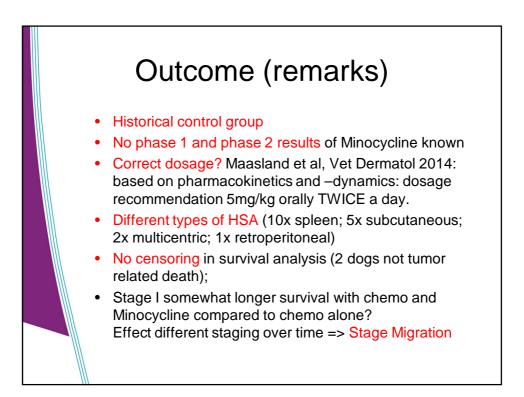
[...] Tumor growth and metastasis are angiogenesis dependent. Antiangiogenic drugs such as minocycline may provide therapeutic benefits in cancer patients. The purpose of this prospective study was to evaluate the efficacy of chemotherapy with doxorubicin and minocycline, an antiangiogenic agent, in dogs with hemangiosarcoma. <u>Eighteen dogs</u> [...] were treated with doxorubicin, cyclophosphamide, and minocycline.

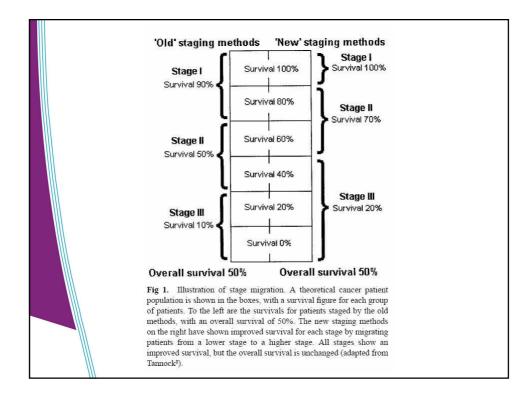
<u>No statistically significant difference</u> was found in survival between the dogs treated with chemotherapy and minocycline, and historical controls consisting of dogs that received chemotherapy alone. Postmortem examination [...] <u>minocycline is ineffective</u> as a single antiangiogenic agent in canine hemangiosarcoma.


J Vet Intern Med 2000;14:395-398


Canine Hemangiosarcoma Treated with Standard Chemotherapy and Minocycline


Karin Sorenmo, Lili Duda, Lisa Barber, Kim Cronin, Carl Sammarco, Amy Usborne, Michael Goldschmidt, and Frances Shofer


However, in Discussion it is stated:


"This may be due to the relatively <u>low numbers of dogs</u> in each stage category and the wide range of survival within each stage.²⁸ In order to detect a difference of magnitude of 1-month survival between treatments, with a power of 80% and alpha of 0.05, one would need 50 patients in each treatment arm. With the current sample size of 17 and 16, <u>power was reduced to 30%."</u>

